Sistemi LTI a tempo continuo

Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo.

Equilibrio di sistemi nonlineari a tempo continuo.

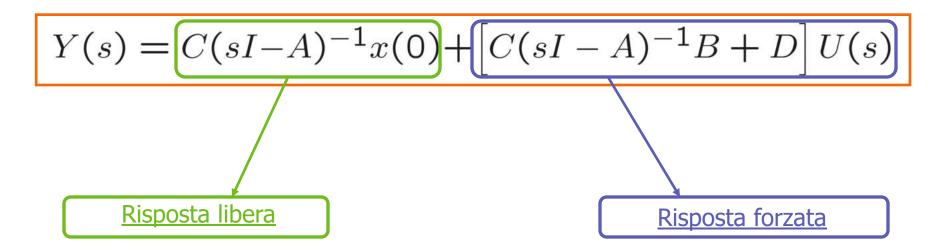
Esercizi

Funzioni di trasferimento

Dato un sistema LTI descritto dalle equazioni di stato:

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Trasformando con Laplace si ottiene la seguente espressione per l'uscita:



Se si ha che x(0) = 0 resta solo il termine:

$$Y(s) = \begin{bmatrix} C(sI - A)^{-1}B + D \end{bmatrix} U(s)$$

$$G(s)$$
Funzione di trasferimento

E' una rappresentazione esterna del sistema, che non dipende dalla particolare scelta di variabili di stato considerata per la rappresentazione interna.

Esempio

sistema SISO:

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

$$C = [1 \quad 0 \quad 0]$$

$$D = \begin{bmatrix} 0 \end{bmatrix}$$

$$Y(s) = \left[C(sI - A)^{-1}B + D \right] U(s)$$

Da calcoli gia' fatti nella parte 3, si ricava:

$$(sI - A)^{-1} = \frac{1}{\det(sI - A)} \begin{bmatrix} s(s-1) & s-1 & 2\\ 2 & (s-1)^2 & 2(s-1)\\ 2 & 1 & s(s-1) \end{bmatrix}$$

$$\det(sI - A) = s^3 - 2s^2 + s - 2 = (s - 2)(s + j)(s - j)$$

$$C(sI - A)^{-1}B = \frac{\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}}{\det(sI - A)} \begin{bmatrix} s(s - 1) & s - 1 & 2 \\ 2 & (s - 1)^2 & 2(s - 1) \\ 2 & 1 & s(s - 1) \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

Conviene svolgere i calcoli in maniera "smart" !!!

$$C(sI - A)^{-1}B = \frac{1}{\det(sI - A)} \begin{bmatrix} s(s - 1) & s - 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$$

$$C(sI - A)^{-1}B = \frac{3s(s-1) + 2}{\det(sI - A)}$$

Funzione di trasferimento (o risposta all'impulso):

$$C(sI - A)^{-1}B = \frac{3s^2 - 3s + 2}{(s - 2)(s^2 + 1)}$$

Osservazioni:

- 1. La fdt ricavata e' una funzione razionale fratta nella variabile S .
- 2. Il grado del numeratore e' inferiore a quello del denominatore.
- 3. Non ci sono cancellazioni.

Ricaviamo la risposta nel tempo ad un gradino unitario:

$$Y(s) = \left[C(sI - A)^{-1}B + D\right]U(s) = G(s)U(s)$$

$$Y(s) = \frac{3s^2 - 3s + 2}{(s - 2)(s^2 + 1)} \frac{1}{s}$$

$$= \frac{3s^2 - 3s + 2}{(s - 2)(s + j)(s - j)} \frac{1}{s}$$

Come al solito si espande in fratti semplici:

$$Y(s) = \frac{A}{(s-2)} + \frac{B}{(s+j)} + \frac{B^*}{(s-j)} + \frac{C}{s}$$

$$A = \lim_{s \to 2} \frac{3s^2 - 3s + 2}{s(s^2 + 1)} = \frac{4}{5}$$

$$B = \lim_{s \to j} \frac{3s^2 - 3s + 2}{s(s-2)(s+j)} = \frac{1 - j7}{10}$$

$$B^* = \frac{1+j7}{10}$$

$$C = \lim_{s \to 0} \frac{3s^2 - 3s + 2}{(s - 2)(s^2 + 1)} = -1$$

Dunque bisogna antitrasformare termine per termine:

$$Y(s) = \frac{4}{5(s-2)} + \frac{(1-j7)}{10(s+j)} + \frac{(1+j7)}{10(s-j)} - \frac{1}{s}$$

Ripasso...se si accoppiano i termini complessi si ha:

$$\frac{1}{10} \left\{ \frac{(1-j7)(s-j) + (1+j7)(s+j)}{(s^2+1)} \right\}$$

$$\frac{1}{10} \left\{ \frac{(s-j-sj7-7) + (s+j+sj7-7)}{(s^2+1)} \right\}$$

$$\frac{1}{5} \left\{ \frac{(s-7)}{(s^2+1)} \right\} \longrightarrow \left\{ \frac{1}{5} \frac{s}{(s^2+1)} - \frac{7}{5} \frac{1}{(s^2+1)} \right\}$$

Infine si ricava che la risposta del sistema SISO di partenza ad un gradino unitario, con condizioni iniziali nulle, e' la seguente:

$$y(t) = \left\{ \frac{4}{5}e^{2t} + \frac{1}{5}\cos t - \frac{7}{5}\sin t - 1 \right\} 1(t)$$

Torniamo ad esaminare l'espressione della fdt nella variabile s:

$$G(s) = \frac{3s^2 - 3s + 2}{(s-2)(s^2+1)}$$

Parametrizzazioni?

(1) Parametrizzazione secondo i coefficienti dei polinomi al numeratore ed al denominatore

$$G(s) = \frac{3s^2 - 3s + 2}{s^3 - 2s^2 + s - 2}$$

(2) Parametrizzazione secondo poli e zeri

$$G(s) = 3 \frac{\left(s - \frac{1}{2} - j\sqrt{\frac{5}{12}}\right) \cdot \left(s - \frac{1}{2} + j\sqrt{\frac{5}{12}}\right)}{(s - 2) \cdot (s - j) \cdot (s + j)}$$

(3) Parametrizzazione secondo costanti di tempo

$$\left(1 - \left(\frac{3}{2}s + \left(\frac{3}{2}s^2\right)\right)\right) = \frac{\alpha_n}{\zeta} = \frac{\sqrt{6}}{4}$$

$$-1 = \mu = \rho \frac{\alpha_n^2}{p \, \omega_n^2} = 3 \cdot \frac{\frac{2}{3}}{(-2) \cdot 1}$$

$$\frac{1}{p} = \tau$$

$$\xi = 0$$

$$\omega_n^2 = 1$$

$$G(s) = \underbrace{\frac{3s^2 - 3s + 2}{(s - 2)(s^2 + 1)}}$$

E' la fdt di un sistema stabile?

No, ha un polo a parte reale positiva!

Ha senso valutare la risposta in frequenza o parlare di risposta a regime, più in generale?

No, poiche' il sistema e' instabile!

Si può applicare il teorema del valore finale?

No, poiche' il sistema e' instabile!

Esercizi

Stabilita' dell'equilibrio

Consideriamo un sistema nonlineare descritto dalle seguenti equazioni :

$$\begin{cases} \dot{x}_1(t) = x_1(t)x_2(t) - 2\\ \dot{x}_2(t) = 2x_1(t) - x_2(t) \end{cases}$$

- 1. Trovare gli stati di equilibrio del sistema.
- 2. Analizzare la stabilita' degli eventuali stati di eq. trovati al punto 1.

1. Stati di equilibrio del sistema.

$$\begin{cases} 0 = x_1(t)x_2(t) - 2 \\ 0 = 2x_1(t) - x_2(t) \end{cases}$$

$$\begin{cases} x_2(t) = 2x_1(t) \\ 2x_1^2(t) - 2 = 0 \end{cases}$$

$$P_1 \begin{cases} \bar{x}_1(t) = 1 \\ \bar{x}_2(t) = 2 \end{cases}$$

$$P_2 \begin{cases} \bar{x}_1(t) = -1 \\ \bar{x}_2(t) = -2 \end{cases}$$

2. Stabilita' degli stati di equilibrio:

$$P_2 \begin{cases} \bar{x}_1(t) &= -1\\ \bar{x}_2(t) &= -2 \end{cases}$$

$$f_x(\bar{x},\bar{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_{P_2} = \begin{bmatrix} x_2 & x_1 \\ 2 & -1 \end{bmatrix}_{P_2}$$

$$A_{P_2} = \begin{bmatrix} -2 & -1 \\ 2 & -1 \end{bmatrix} \qquad \det(sI - A) = s^2 + 3s + 4$$

$$\begin{cases} p_1 = \frac{-3+j\sqrt{3}}{2} \\ p_2 = \frac{-3-j\sqrt{3}}{2} \end{cases}$$

$$\Re\{p_1\}, \Re\{p_2\} < 0$$

 P_{2} e' uno stato di equilibrio asintoticamente stabile del sistema.

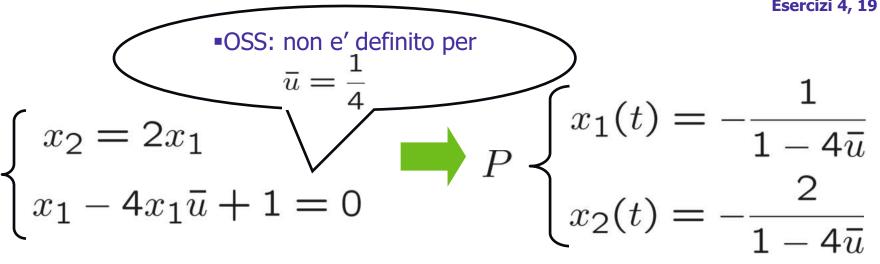
 P_1 Per casa...

Se le equazioni fossero state :

$$\begin{cases} \dot{x}_1(t) = x_1(t) - 2u(t)x_2(t) + 1 \\ \dot{x}_2(t) = 2x_1(t) - x_2(t) \\ y(t) = x_1(t) + x_2(t) \end{cases}$$

1. Stati di equilibrio del sistema, al variare di $u(t)=\bar{u}=\mathrm{cost}$

$$\begin{cases}
0 = x_1 - 2x_2\bar{u} + 1 \\
0 = 2x_1 - x_2
\end{cases}$$



$$A = f_x(\bar{x}, \bar{u}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix}_P = \begin{bmatrix} 1 & -2\bar{u} \\ 2 & -1 \end{bmatrix}_P$$

$$\det(sI - A) = s^2 - 1 + 4\bar{u}$$

<u>Studiare la stabilita' al</u> <u>variare di u costante e</u> ES: stati di equilibrio del sistema per $u(t) \equiv 1$

$$\begin{cases} x_2(t) = 2x_1(t) \\ x_1 - 4x_1 + 1 = 0 \end{cases} P \begin{cases} x_1(t) = \frac{1}{3} \\ x_2(t) = \frac{2}{3} \end{cases}$$

$$A_P = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} \qquad \det(sI - A) = s^2 + 3$$

Che cosa significa?

$$\det(sI - A) = s^2 + 3$$

$$\begin{cases} p_1 = j\sqrt{3} \\ p_2 = -j\sqrt{3} \end{cases} \longrightarrow$$

Poli a parte reale nulla!

Non si può dire nulla sulla
stabilità o meno dello stato di
equilibrio!

Calcoliamo anche la matrice B del sistema linearizzato:

$$B = f_u(\bar{x}, \bar{u}) = \begin{bmatrix} -2x_2 \\ 0 \end{bmatrix}_P = \begin{bmatrix} -\frac{4}{3} \\ 0 \end{bmatrix}$$

Per piccole perturbazioni il sistema segue queste equazioni:

$$\begin{bmatrix} \dot{\delta}x_1 \\ \dot{\delta}x_2 \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} \delta x_1 \\ \delta x_2 \end{bmatrix} + \begin{bmatrix} -4 \\ 0 \end{bmatrix} \delta u(t)$$

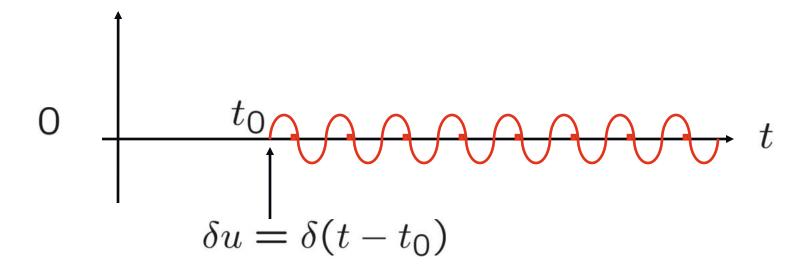
$$C = \begin{bmatrix} 1 & 1 \end{bmatrix}$$

$$G(s) = \left[C(sI - A)^{-1}B \right]$$

$$G(s) = -\frac{4}{3} \frac{s - 12}{s^2 + 3}$$

Se si **perturba l'equilibrio** in modo "impulsivo", **l'uscita del sistema linearizzato** presenta un'**oscillazione permanente** intorno allo zero.

$$\delta y(t) = \{K_1 \cos t + K_2 \sin t\} \mathbf{1}(t)$$



<u>Il comportamento del sistema non lineare reale puo' essere</u> <u>diverso...bisognerebbe indagare con altri strumenti (che non vedremo).</u>

Caso critico:
$$\bar{u} = \frac{1}{4}$$

$$\det(sI - A) = s^2 - 1 + 4\frac{1}{4} = s^2$$

$$\nearrow P$$

Ammissibile

Sistema linearizzato instabile, ma i poli sono a parte reale nulla: dunque non si puo' concludere che il punto di equilibrio del sistema nonlineare e' instabile

Possibili esercizi d'esame

1. Considerato il sequente sistema LTI:

$$\begin{cases} \dot{x}_1(t) &= -x_1(t) - 3x_2(t) + u(t) \\ \dot{x}_2(t) &= -5x_2(t) + u(t) \\ y(t) &= x_1(t) + u(t) \end{cases}$$

- 1. Analizzare la stabilita' del sistema.
- 2. Calcolarne la funzione di trasferimento.
- 3. Calcolare analiticamente la risposta al gradino a partire da c.i. nulle

1. Stabilita' del sistema.

Si riscrivono le equazioni in forma matriciale, ricavando la matrice \ensuremath{A} .

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & -3 \\ 0 & -5 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{vmatrix} x_1(t) \\ x_2(t) \end{vmatrix} + \begin{bmatrix} 1 \end{bmatrix} u(t)$$

Dunque si ricavano il polinomio caratteristico e gli autovalori

$$\varphi(s) = \det(sI - A) = \det\left\{ \begin{bmatrix} s+1 & 3\\ 0 & s+5 \end{bmatrix} \right\}$$

$$\varphi(s) = \det(sI - A) = (s+1)(s+5)$$

$$p_1 = -1$$

$$p_2 = -5$$

(si poteva anche direttamente dire che gli autovalori di A erano gli elementi sulla diagonale, poiche' risulta una matrice triangolare superiore)

<u>Il sistema e' asint. stabile:</u> gli autovalori hanno parte reale negativa.

2. Funzione di trasferimento:
$$G(s) = C[(sI - A)^{-1}]B + D$$

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \qquad \Box \qquad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$(sI - A)^{-1} = \frac{1}{(s+1)(s+5)} \begin{bmatrix} s+5 & -3 \\ 0 & s+1 \end{bmatrix}$$

$$(sI - A)^{-1} = \begin{bmatrix} \frac{1}{s+1} & -\frac{3}{(s+1)(s+5)} \\ 0 & \frac{1}{(s+5)} \end{bmatrix}$$

$$G(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{s+1} & -\frac{3}{(s+1)(s+5)} \\ 0 & \frac{1}{(s+5)} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + [1]$$

$$G(s) = \begin{bmatrix} \frac{1}{(s+1)} & -\frac{3}{(s+1)(s+5)} \end{bmatrix} \begin{bmatrix} 1\\1 \end{bmatrix} + [1]$$

$$G(s) = \frac{1}{(s+1)} - \frac{3}{(s+1)(s+5)} + 1$$

$$G(s) = \frac{(s+5)-3+(s+1)(s+5)}{(s+1)(s+5)}$$

$$G(s) = \frac{s^2 + 7s + 7}{(s+1)(s+5)}$$

numeratore e denominatore di grado uguale! 3. Risposta al gradino a partire da c.i. nulle.

Significa calcolare l'uscita con la fdt, con in ingresso un gradino.

$$Y(s) = G(s)U(s)$$

$$Y(s) = \frac{s^2 + 7s + 7}{(s+1)(s+5)} \frac{1}{s}$$

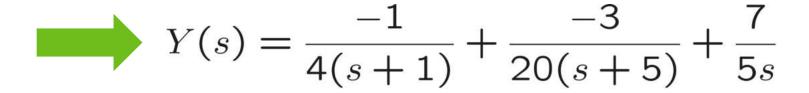
...ancora una volta bisogna espandere in fratti semplici...

$$Y(s) = \frac{A}{(s+1)} + \frac{B}{(s+5)} + \frac{C}{s}$$

$$A = \lim_{s \to -1} \frac{s^2 + 7s + 7}{s(s+5)} = -\frac{1}{4}$$

$$B = \lim_{s \to -5} \frac{s^2 + 7s + 7}{s(s+1)} = -\frac{3}{20}$$

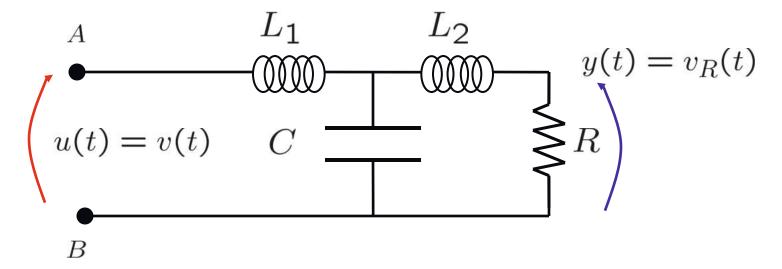
$$C = \lim_{s \to 0} \frac{s^2 + 7s + 7}{(s+5)(s+1)} = \frac{7}{5}$$



Dunque la risposta nel tempo e':

$$y(t) = \left\{ \frac{-1}{4}e^{-t} + \frac{-3}{20}e^{-5t} + \frac{7}{5} \right\} 1(t)$$

2. Assegnato il seguente sistema:



- 1. Analizzare la stabilita' del sistema.
- 2. Calcolarne la funzione di trasferimento.
- 3. Calcolare analiticamente la risposta al gradino a partire da c.i.

$$x_0 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$$

Variabili di stato:

$$\begin{cases} x_1(t) := i_{L_1}(t) \\ x_2(t) := i_{L_2}(t) \\ x_3(t) := v_C(t) \end{cases}$$

$$\begin{cases} \dot{x}_1(t) := \frac{1}{L_1} v_{L_1}(t) \\ \dot{x}_2(t) := \frac{1}{L_2} v_{L_2}(t) \\ \dot{x}_3(t) := \frac{1}{C} i_C(t) \end{cases}$$

$$v_{L_1}(t) = u - x_3(t)$$

 $v_{L_2}(t) = x_3(t) - R x_2(t)$
 $i_C(t) = x_1(t) - x_2(t)$

$$\begin{cases} \dot{x}_1(t) &= -\frac{1}{L_1} x_3(t) + \frac{1}{L_1} u(t) \\ \dot{x}_2(t) &= -\frac{R}{L_2} x_2(t) + \frac{1}{L_2} x_3(t) \\ \dot{x}_3(t) &= \frac{1}{C} x_1(t) - \frac{1}{C} x_2(t) \\ y &= R x_2 \end{cases}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\frac{1}{L_1} \\ 0 & -\frac{R}{L_2} & \frac{1}{L_2} \\ \frac{1}{C} & -\frac{1}{C} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} \frac{1}{L_1} \\ 0 \\ 0 \end{bmatrix} u(t)$$

$$\begin{bmatrix} y(t) \end{bmatrix} = \begin{bmatrix} 0 & R & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

1. Stabilita' del sistema.

$$\varphi(s) = \det(sI - A) = \det\begin{bmatrix} s & 0 & \frac{1}{L_1} \\ 0 & s + \frac{R}{L_2} & -\frac{1}{L_2} \\ -\frac{1}{C} & +\frac{1}{C} & s \end{bmatrix}$$

$$\varphi(s) = s^3 + s^2 \frac{R}{L_2} + s \frac{1}{C} \left(\frac{1}{L_1} + \frac{1}{L_2} \right) + \frac{R}{L_1 L_2 C}$$

Idea per un esercizio: discutere la stabilita' studiando con il criterio di Routh-Hurwitz il polinomio...

$$\varphi(s) = s^3 + 4s^2 + 5s + 2 = (s^2 + 1)(s + 2)$$

$$\begin{cases} p_1 &= -2 \\ p_2 &= +j \\ p_3 &= -j \end{cases}$$

<u>Il sistema e' stabile, ma</u> non asintoticamente stabile, perche' ci sono due radici immaginarie <u>pure.</u>

2. Funzione di trasferimento.

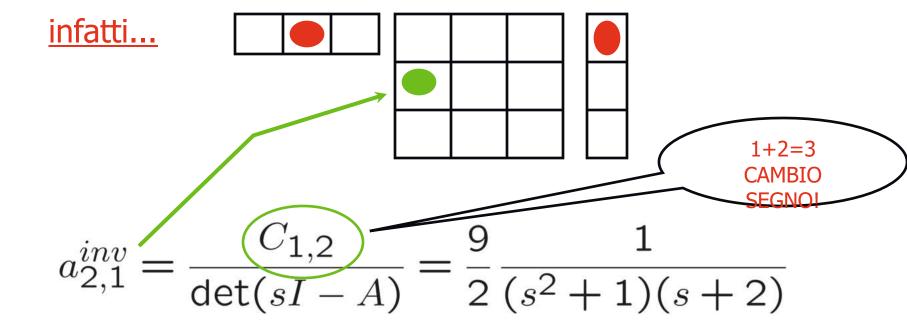
$$G(s) = \left[C(sI - A)^{-1}B \right]$$

$$C = \begin{bmatrix} 0 & 4 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} \frac{1}{9} \\ 0 \\ 0 \end{bmatrix}$$

Come risolvere il problema in maniera "smart" :

Per come sono fatte le matrici $C,\,B$ basta calcolare SOLO UN ELEMENTO dell'inversa di (sI-A) :

 $a_{2,1}^{ini}$



Moltiplicando per gli unici elementi non nulli di $\ C,\ B$:

$$G(s) = 2 \frac{1}{(s^2 + 1)(s + 2)}$$

3. Risposta al gradino a partire dalle c.i.

$$x_0 = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T$$

In presenza di condizioni iniziali serve il termine: $\left[C(sI-A)^{-1}\right]$

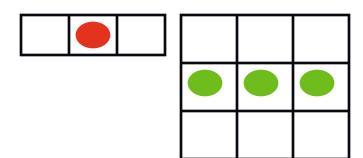
Nel nostro caso dobbiamo dunque calcolare altri due termini dell'inversa:

$$a_{2,2}^{inv} = \frac{C_{2,2}}{\det(sI - A)} = \frac{s^2 + 1/2}{(s^2 + 1)(s + 2)}$$

$$a_{2,3}^{inv} = \frac{C_{3,2}}{\det(sI - A)} = \frac{s}{(s^2 + 1)(s + 2)}$$

$$a_{2,3}^{inv} = \frac{C_{3,2}}{\det(sI - A)} = \frac{s}{(s^2 + 1)(s + 2)}$$

infatti...



E si ricava:

$$\left[C(sI-A)^{-1}\right]$$

$$4 \left[\frac{9}{2} \frac{1}{(s^2+1)(s+2)} \quad \frac{s^2+1/2}{(s^2+1)(s+2)} \quad \frac{s}{(s^2+1)(s+2)} \right]$$

Dunque la risposta al gradino che cerchiamo e' formata due termini :

$$Y_{l}(s) = \begin{bmatrix} \frac{18}{(s^{2}+1)(s+2)} & \frac{2(2s^{2}+1)}{(s^{2}+1)(s+2)} & \frac{4s}{(s^{2}+1)(s+2)} \end{bmatrix} \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$

$$Y_{f}(s) = 2 \frac{1}{(s^{2}+1)(s+2)} \frac{1}{s}$$
Calcolo inutile... \otimes

Ora basta antitrasformare!

OSSERVAZIONI FINALI

- 1. La scelta delle variabili di stato cade in generale sugli elementi del sistema "che hanno memoria", per cui e' possibile scrivere delle relazioni differenziali.
- 2. Una volta scelte le variabili si stato, le matrici di stato possono cambiare a seconda dell'ordine con cui si scelgono tali variabili.
 - 3. Il polinomio caratteristico e la funzione di trasferimento, una volta scelti ingresso ed uscita, sono invece caratteristiche invarianti del sistema al variare del sistema di riferimento (cioe' cambiando le matrici di stato).