Movimento dello stato nei sistemi lineari

Soluzione generale nel caso a tempo continuo

Si consideri un sistema dinamico lineare libero (senza ingresso)

$$\dot{x}(t) = A(t)x(t), \quad x(t_0^-) = x_0 \quad (\star)$$

In generale abbiamo visto che qualunque soluzione x(t), $t \in [t_0, t_1]$ di (\star) deve soddisfare anche

$$x(t) = x_0 + \int_{t_0}^t A(\tau)x(\tau)d\tau, \quad t \in [t_0, t_1]$$

Si definisce la sequenza di approssimazioni successive:

$$\varphi_{0}(t, t_{0}, x_{0}) = x_{0}$$

$$\varphi_{1}(t, t_{0}, x_{0}) = x_{0} + \int_{t_{0}}^{t} A(\tau)x_{0}d\tau$$

$$\varphi_{2}(t, t_{0}, x_{0}) = x_{0} + \int_{t_{0}}^{t} A(\tau)\varphi_{1}(\tau, t_{0}, x_{0})d\tau$$

$$\vdots$$

$$\varphi_{m}(t, t_{0}, x_{0}) = x_{0} + \int_{t_{0}}^{t} A(\tau)\varphi_{m-1}(\tau, t_{0}, x_{0})d\tau$$

Evidentemente

$$\varphi_{m}(t, t_{0}, x_{0}) = x_{0} + \int_{t_{0}}^{t} A(\tau_{1}) x_{0} d\tau_{1} + \int_{t_{0}}^{t} A(\tau_{1}) \int_{t_{0}}^{\tau_{1}} A(\tau_{2}) x_{0} d\tau_{2} d\tau_{1}$$

$$\cdots + \int_{t_{0}}^{t} A(\tau_{1}) \int_{t_{0}}^{\tau_{1}} A(\tau_{2}) \cdots \int_{t_{0}}^{\tau_{m-1}} A(\tau_{m}) x_{0} d\tau_{m} \cdots d\tau_{1}$$

$$= \left[I + \int_{t_{0}}^{t} A(\tau_{1}) d\tau_{1} + \int_{t_{0}}^{t} A(\tau_{1}) \int_{t_{0}}^{\tau_{1}} A(\tau_{2}) d\tau_{2} d\tau_{1} \right]$$

$$\cdots + \int_{t_{0}}^{t} A(\tau_{1}) \int_{t_{0}}^{\tau_{1}} A(\tau_{2}) \cdots \int_{t_{0}}^{\tau_{m-1}} A(\tau_{m}) d\tau_{m} \cdots d\tau_{1} d\tau_{1} d\tau_{1}$$

dove I e` la matrice identica di dimensione n

Si dimostra che la sequenza di funzioni $\{\varphi_m(t,t_0,x_0), m=0,1,2,\ldots\}$ converge uniformemente all'unica soluzione $\varphi(t,t_0,x_0)$ di (\star) su sottoinsiemi compatti di \Re

$$\varphi(t, t_0, x_0) = \Phi(t, t_0)x_0$$

con

$$\Phi(t,t_0) = \left[I + \int_{t_0}^t A(\tau_1) d\tau_1 + \int_{t_0}^t A(\tau_1) \int_{t_0}^{\tau_1} A(\tau_2) d\tau_2 d\tau_1 \right]$$

$$\cdots + \int_{t_0}^t A(\tau_1) \int_{t_0}^{\tau_1} A(\tau_2) \cdots \int_{t_0}^{\tau_{m-1}} A(\tau_m) d\tau_m \cdots d\tau_1 + \cdots \right]$$

serie di Peano-Baker

Si vede subito che

$$\Phi(t,t) = I, \ \forall t$$

Inoltre, differenziando l'espressione di $\Phi(t, t_0)$ si ha subito

$$\dot{\Phi}(t,t_0) = A(t)\Phi(t,t_0)$$

E` ora evidente che assegnato lo stato iniziale x_0 e conoscendo la matrice di funzioni del tempo $\Phi(t,t_0)$ risulta univocamente determinato $x(t), \, \forall t>t_0$

La matrice $\Phi(t,t_0)$ prende il nome di matrice di transizione dello stato per il sistema (\star) ed ha un'importanza fondamentale nello studio del comportamento dei sistemi lineari.

Si consideri ora un sistema dinamico lineare libero tempo-invariante

$$\dot{x}(t) = Ax(t), \quad x(t_0^-) = x_0 \quad (\star\star)$$

La matrice di transizione dello stato assume ora una forma particolare; si ha infatti:

$$\varphi_m(t, t_0, x_0) = \left[I + A \int_{t_0}^t d\tau_1 + A^2 \int_{t_0}^t \int_{t_0}^{\tau_1} d\tau_2 d\tau_1 \right]$$

$$\cdots + A^m \int_{t_0}^t \int_{t_0}^{\tau_1} \cdots \int_{t_0}^{\tau_{m-1}} d\tau_m \cdots d\tau_1 d\tau_1 d\tau_2 d\tau_1$$

$$= \left[I + A(t - t_0) + A^2 \frac{(t - t_0)^2}{2} + \cdots + A^m \frac{(t - t_0)^m}{m!} \right] x_0$$

Si dimostra che la sequenza di funzioni $\{\varphi_m(t,t_0,x_0), m=0,1,2,\ldots\}$ converge uniformemente all'unica soluzione $\varphi(t,t_0,x_0)$ di $(\star\star)$ su sottoinsiemi compatti di \Re

$$\varphi(t, t_0, x_0) = \Phi(t, t_0) x_0$$

con

$$\Phi(t,t_0) = \left[I + A(t-t_0) + A^2 \frac{(t-t_0)^2}{2} + \dots + A^m \frac{(t-t_0)^m}{m!} + \dots \right]$$
$$= \left[I + \sum_{k=1}^{\infty} A^k \frac{(t-t_0)^k}{k!} \right]$$

Osserviamo che $\Phi(t,t_0)$ in realta` non dipende dagli istanti t e t_0 separatamente, ma dipende dalla differenza $(t-t_0)$ e questa e` una conseguenza della tempo-invarianza.

Con leggero abuso notazionale si scrivera`

$$\varphi(t, t_0, x_0) = \Phi(t, t_0)x_0 := \Phi(t - t_0)x_0$$

Si consideri ora un sistema dinamico con ingresso

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0^-) = x_0 \quad (\bullet)$$

Si supponga che la soluzione di (●) assuma la forma

$$\varphi(t, t_0, x_0, u(\cdot)) = \Phi(t, t_0)x_0 + \int_{t_0}^t \Phi(t, \tau)B(\tau)u(\tau)d\tau$$

dove $\Phi(t,t_0)$ e` la matrice di transizione dello stato associata a (\star)

- Per $t = t_0$ \longrightarrow $\varphi(t_0, t_0, x_0) = \Phi(t_0, t_0)x_0 = Ix_0 = x_0$
- Poi, ricordando che $\frac{d}{dt}\int_{t_0}^{r(t)}f(t,\tau)d\tau=\dot{r}(t)f[t,r(t)]+\int_{t_0}^{r(t)}\frac{\partial}{\partial t}f(t,\tau)d\tau$, si ha

$$\dot{\varphi}(t,t_0,x_0,u(\cdot)) = \dot{\Phi}(t,t_0)x_0 + \Phi(t,t)B(t)u(t) + \int_{t_0}^t \dot{\Phi}(t,\tau)B(\tau)u(\tau)d\tau$$

$$= A(t)\Phi(t,t_0)x_0 + B(t)u(t) + \int_{t_0}^t A(t)\Phi(t,\tau)B(\tau)u(\tau)d\tau$$

$$= A(t)\left[\Phi(t,t_0)x_0 + \int_{t_0}^t \Phi(t,\tau)B(\tau)u(\tau)d\tau\right] + B(t)u(t)$$

$$= A(t)\varphi(t,t_0,x_0,u(\cdot)) + B(t)u(t) \text{ soluzione di } (\bullet) \text{ quindi unica soluzione di } (\bullet)$$

Riassumendo:

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0^-) = x_0$$

ha soluzione unica

$$\varphi(t, t_0, x_0, u(\cdot)) = \Phi(t, t_0)x_0 + \int_{t_0}^t \Phi(t, \tau)B(\tau)u(\tau)d\tau$$

• Se $x_0 = 0$

$$\varphi(t, t_0, 0, u(\cdot)) = \varphi_F(t) = \int_{t_0}^t \Phi(t, \tau) B(\tau) u(\tau) d\tau$$

Movimento forzato

• Se
$$u(t) = 0, \forall t \geq t_0$$

$$\varphi(t, t_0, x_0, 0) = \varphi_L(t) = \Phi(t, t_0)x_0$$

Movimento libero

e la soluzione totale e` esprimibile come

$$\varphi(t, t_0, x_0) = \varphi_L(t) + \varphi_F(t)$$

Si consideri ora un sistema dinamico con ingresso ed eq. d'uscita

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0^-) = x_0$$

 $y(t) = C(t)x(t) + D(t)u(t)$

Si ottiene immediatamente

$$y(t) = C(t)\Phi(t, t_0)x_0 + \int_{t_0}^t C(t)\Phi(t, \tau)B(\tau)u(\tau)d\tau + D(t)u(t)$$

• Se
$$x_0 = 0$$

$$y(t) = y_F(t) = \int_{t_0}^t C(t)\Phi(t,\tau)B(\tau)u(\tau)d\tau + D(t)u(t)$$

risposta forzata

• Se
$$u(t) = 0, \forall t \geq t_0$$

$$y(t) = y_L(t) = C(t)\Phi(t, t_0)x_0$$

risposta libera

e la risposta totale e` esprimibile come

$$y(t) = y_L(t) + y_F(t)$$

Soluzione generale nel caso a tempo discreto

Si consideri un sistema dinamico lineare libero a tempo discreto

$$x(k+1) = A(k)x(k), \quad x(k_0) = x_0 \quad (\star)$$

Evidentemente x(k), $k > k_0$ puo` essere determinato iterando l'equazione di stato (non serve risolvere un problema differenziale)

$$x(k_0) = x_0$$

 $x(k_0 + 1) = A(k_0)x(k_0)$
 $x(k_0 + 2) = A(k_0 + 1)x(k_0 + 1) = A(k_0 + 1)A(k_0)x(k_0)$
 \vdots
 $x(k) = A(k-1)A(k-2)A(k-3) \cdots A(k_0 + 1)A(k_0)x(k_0)$

Quindi, in analogia col caso a tempo continuo, abbiamo

$$x(k) = \varphi(k, k_0, x_0) = \Phi(k, k_0) x_0$$
 con
$$\Phi(k, k_0) = \prod_{j=k_0}^{k-1} A(j), \quad k > k_0; \quad \Phi(k_0, k_0) = I$$

matrice di transizione dello stato a tempo discreto

Consideriamo ora un sistema dinamico lineare a tempo discreto con ingresso

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad x(k_0) = x_0$$

Evidentemente

$$x(k_0) = x_0$$

$$x(k_0 + 1) = A(k_0)x(k_0) + B(k_0)u(k_0)$$

$$x(k_0 + 2) = A(k_0 + 1)x(k_0 + 1) + B(k_0 + 1)u(k_0 + 1)$$

$$= A(k_0 + 1)[A(k_0)x(k_0) + B(k_0)u(k_0)] + B(k_0 + 1)u(k_0 + 1)$$

$$= A(k_0 + 1)A(k_0)x(k_0) + A(k_0 + 1)B(k_0)u(k_0) + B(k_0 + 1)u(k_0 + 1)$$

$$x(k_0 + 3) = A(k_0 + 2)x(k_0 + 2) + B(k_0 + 2)u(k_0 + 2)$$

$$= A(k_0 + 2)A(k_0 + 1)A(k_0)x(k_0) + A(k_0 + 2)A(k_0 + 1)B(k_0)u(k_0)$$

$$+A(k_0 + 2)B(k_0 + 1)u(k_0 + 1) + B(k_0 + 2)u(k_0 + 2)$$

$$\Phi(k, k_0) = \prod_{j=k_0}^{k-1} A(j), \quad k > k_0; \quad \Phi(k_0, k_0) = I$$

otteniamo

$$x(k) = \varphi(k, k_0, x_0, \{u(k_0), \dots, u(k-1)\})$$

$$= \Phi(k, k_0)x_0 + \sum_{j=k_0} \Phi(k, j+1)B(j)u(j), \quad k > k_0$$
• Se $x_0 = 0$

$$x(k) = \varphi(k, k_0, 0, \{u(k_0), \dots, u(k-1)\}) = \varphi_F(k)$$

$$= \sum_{j=k_0}^{k-1} \Phi(k, j+1)B(j)u(j), \quad k > k_0$$
Movimento forzato

• Se $u(k) = 0, \forall k \geq k_0$

$$x(k) = \varphi(k, k_0, x_0, 0) = \varphi_L(k) = \Phi(k, k_0)x_0, \quad k > k_0$$

Movimento libero

e la soluzione totale e` esprimibile come

$$\varphi(k, k_0, x_0, \{u(k_0), \dots, u(k-1)\}) = \varphi_L(k) + \varphi_F(k)$$

Consideriamo ora un sistema dinamico lineare a tempo discreto con ingresso ed equazione d'uscita

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad x(k_0) = x_0$$

 $y(k) = C(k)x(k) + D(k)u(k)$

Evidentemente

$$y(k) = C(k)\Phi(k, k_0)x_0 + \sum_{j=k_0}^{k-1} C(k)\Phi(k, j+1)B(j)u(j) + D(k)u(k), \quad k > k_0$$

• Se $x_0 = 0$

$$y(k) = y_F(k) = \sum_{j=k_0}^{k-1} C(k)\Phi(k, j+1)B(j)u(j) + D(k)u(k), k > k_0$$
Risposta forzata

• Se $u(k) = 0, \forall k \ge k_0$

$$y(k) = y_L(k) = C(k)\Phi(k, k_0)x_0, k > k_0$$
 Risposta libera

e la risposta totale e` esprimibile come

$$y(k) = y_L(k) + y_F(k)$$

Descrizione esterna di sistemi lineari: Caso a tempo discreto

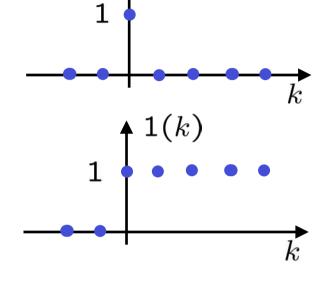
Premesse Parte 2, 18

Consideriamo l'impulso unitario a tempo discreto:

$$\delta(k) = \begin{cases} 0, & k \neq 0, k \in \mathbb{Z} \\ 1, & k = 0 \end{cases}$$

ed il gradino unitario a tempo discreto

$$1(k) = \begin{cases} 0, & k < 0, k \in \mathcal{Z} \\ 1, & k \ge 0, k \in \mathcal{Z} \end{cases}$$



Evidentemente

$$\delta(k) = 1(k) - 1(k-1)$$
 e $1(k) = \begin{cases} \sum_{j=0}^{\infty} \delta(k-j), & k \ge 0 \\ 0, & k < 0 \end{cases}$

Inoltre una sequenza arbitraria $\{x(k)\}$ puo` essere espressa come

$$x(k) = \sum_{j=-\infty}^{\infty} x(j)\delta(k-j)$$

Consideriamo ora un sistema lineare a tempo discreto (ingresso e uscita scalari)

$$u(k)$$
 $y(k)$

Analizziamo in quali condizioni, la relazione "esterna" tra ingresso e uscita

$$y(k) = \sum_{j=-\infty}^{\infty} h(k,j)u(j) \quad (\star)$$

puo` rappresentare compiutamente il sistema dal punto di vista ingressouscita per una opportuna funzione h(k,j)

Ipotesi: le sequenze $\{h(k,j)\}$ per qualunque k fissato e $\{u(j)\}$ sono tali per cui (\star) e` ben definita. Per esempio, $\{h(k,j)\} \in l_2$ e $\{u(j)\} \in l_2$

Nelle condizioni in cui la (*) e` ben definita, essa e` anche una relazione lineare

- Supponiamo ora che h(k,j) indichi la risposta del sistema all'istante k causata da un impulso unitario applicato all'istante j
- Per la linearita` la risposta del sistema all'istante k causata da un impulso all'istante j di ampiezza u(j) e` h(k,j)u(j)
- Sempre per la linearita`, la risposta del sistema all'istante k causata da due impulsi agli istanti j_1 e j_2 di ampiezze $u(j_1)$ e $u(j_2)$ e` $h(k,j_1)u(j_1)+h(k,j_2)u(j_2)$
- ullet Pertanto, all'istante k la sequenza in uscita al sistema dinamico y(k) causata da una sequenza d'ingresso $\{u(j)\}$ si puo` esprimere

$$y(k) = \sum_{j=-\infty}^{\infty} h(k,j)u(j)$$

dove h(k,j) rappresenta quindi la risposta all'istante k causata da un impulso unitario $\delta(k-j)$ applicato all'istante j

Consideriamo ora un sistema lineare a tempo discreto (ingresso e uscita scalari) tempo-invariante

se $\{h(k,0)\}$ e` la risposta a $\{\delta(k)\}$ ne consegue che $\{h(k-j,0)\}$ e` la risposta a $\{\delta(k-i)\}$

Quindi, con leggero abuso notazionale si definisce

$$h(k-j) := h(k-j,0)$$

e pertanto si ottiene la ben nota somma di convoluzione

$$y(k) = u(k) * h(k) = \sum_{j=-\infty}^{\infty} h(k-j)u(j)$$

Evidentemente, con un cambio di variabile si ha anche

$$y(k) = h(k) * u(k) = \sum_{i=-\infty}^{\infty} h(i)u(k-i)$$

La proprieta di causalita implica ed e implicata dal fatto che l'uscita deve essere identicamente nulla prima che un ingresso sia applicato.

$$h(k,j) = 0 \quad \forall j, \forall k < j$$

E quindi quando il sistema e` causale si ha

$$y(k) = \sum_{j=-\infty}^{k} h(k,j)u(j)$$

$$k_{0}-1$$

$$y(k) = \sum_{j=-\infty}^{k_0-1} h(k,j)u(j) + \sum_{j=k_0}^{k} h(k,j)u(j)$$

$$= Y(k; k_0 - 1) + \sum_{j=k_0}^{k} h(k,j)u(j)$$

Si definisce che il sistema e` in quiete all'istante k_0 se

$$u(k) = 0, \forall k \ge k_0 \implies y(k) = 0, \forall k \ge k_0$$

e cio` implica
$$Y(k; k_0 - 1) = 0$$

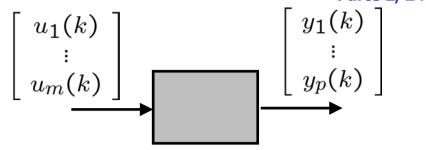
Se quindi si sa che il sistema e` in quiete all'istante k_0 si puo` scrivere

$$y(k) = \sum_{j=k_0}^{\infty} h(k,j)u(j)$$

e nel caso di sistema causale in quiete all'istante k_0 si ha infine

$$y(k) = \sum_{j=k_0}^{k} h(k,j)u(j)$$

Possiamo generalizzare al caso di sistema lineare a tempo discreto (ingresso e uscita vettoriali)



Si vede subito che si puo` scrivere

$$y(k) = \sum_{j=-\infty}^{\infty} H(k,j)u(j)$$

dove la matrice di risposta impulsiva a tempo discreto e` data da

$$H(k,j) = \begin{bmatrix} h_{11}(k,j) & h_{12}(k,j) & \cdots & h_{1m}(k,j) \\ h_{21}(k,j) & h_{22}(k,j) & \cdots & h_{2m}(k,j) \\ \vdots & \vdots & \vdots & \vdots \\ h_{p1}(k,j) & h_{p2}(k,j) & \cdots & h_{pm}(k,j) \end{bmatrix}$$

- e $h_{rs}(k,j)$ indica la componente r della risposta del sistema all'istante k causata da un impulso unitario applicato all'istante j sulla componente s dell'ingresso mentre tutte le altre componenti dell'ingresso sono identicamente nulle.
- Tutte le considerazioni e definizioni del caso scalare si estendono al caso vettoriale senza difficolta`

Infine, nel caso in cui si disponga di una descrizione in eq. di stato con stato iniziale nullo

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad x(k_0) = 0$$

 $y(k) = C(k)x(k) + D(k)u(k)$

e ricordando che

$$y(k) = \sum_{j=k_0}^{k-1} C(k)\Phi(k, j+1)B(j)u(j) + D(k)u(k), \quad k > k_0$$

otteniamo subito

$$H(k,j) = \begin{cases} C(k)\Phi(k,j+1)B(j), & k>j\\ D(k) & k=j\\ 0 & k$$

che nel caso tempo-invariante diventa

$$H(k-j) = \begin{cases} CA^{k-(j+1)}B, & k > j \\ D & k = j \\ 0 & k < j \end{cases}$$

Descrizione esterna di sistemi lineari: Caso a tempo continuo

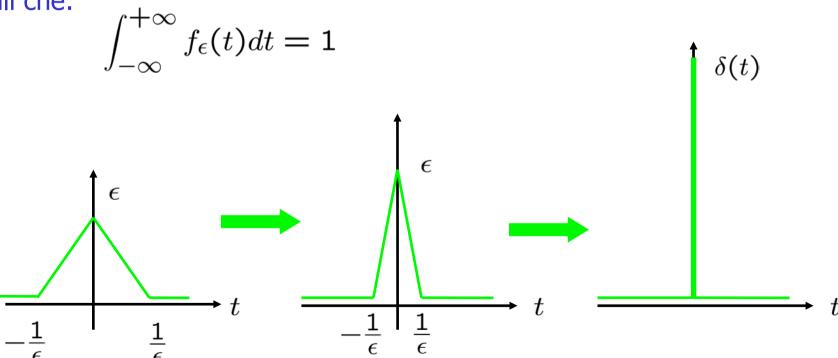
Ricordiamo: "funzione" impulso di Dirac

L'impulso di Dirac non e` una funzione nel senso usuale del termine ma e` una cosiddetta "distribuzione" o "funzione generalizzata" definita come:

$$\delta(t) := \begin{cases} +\infty, & t = 0 \\ 0, & t \neq 0 \end{cases} \qquad \int_{-\infty}^{+\infty} \delta(t) dt = 1$$

Si può vedere come il $\lim_{\epsilon \to \infty} f_{\epsilon}(t)$ di una successione di funzioni $f_{\epsilon}(t)$

tali che:



Descrizione esterna di sistemi lineari a tempo continuo

Si dimostra (Antsaklis-Michel) che

$$\begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix} \qquad \qquad \begin{bmatrix} y_1(t) \\ \vdots \\ y_p(t) \end{bmatrix} \qquad \qquad y(t) = (Pu)(t) = \int_{-\infty}^{\infty} H_P(t, \tau) u(\tau) d\tau$$

Se
$$u_j(t) \neq 0, u_k(t) = 0, \forall k = 1, ..., m, k \neq j$$

$$y_i(t) = \int_{-\infty}^{\infty} h_{P_{ij}}(t,\tau) u_j(\tau) d\tau$$

con $H_P(t,\tau)=[h_{P_{ij}}(t,\tau)]$ matrice di risposta impulsiva dove $h_{P_{ij}}(t,\tau)$ e` la componente i della risposta all'istante t ad un impulso all'istante τ applicato sulla componente j dell'ingresso mentre tutte le altre componenti dell'ingresso sono identicamente nulle

Per la causalita` l'uscita deve essere nulla prima dell'applicazione di un ingresso. Quindi

$$\forall \tau, \ H_P(t,\tau) = 0, \ \forall t < \tau \implies y(t) = \int_{-\infty}^t H_P(t,\tau)u(\tau)d\tau$$

Possiamo riscrivere

$$y(t) = \int_{-\infty}^{t_0} H_P(t,\tau) u(\tau) d\tau + \int_{t_0}^t H_P(t,\tau) u(\tau) d\tau$$
$$:= Y(t;t_0) + \int_{t_0}^t H_P(t,\tau) u(\tau) d\tau$$

Si puo` quindi dire che il sistema e` in quiete all'istante t_0 se

$$u(t) = 0, \forall t \ge t_0 \implies y(t) = 0, \forall t \ge t_0$$

Nel caso tempo-invariante $H_P(t,\tau)=H_P(t-\tau,0)$

$$y(t) = (H_P * u)(t) = \int_{-\infty}^t H_P(t - \tau)u(\tau)d\tau$$

Siccome $H_P(t)$ caratterizza le risposte al tempo t ad ingressi impulsivi applicati in $\tau=0$ la causalita` implica $H_P(t)=0, \forall t<0$

Inoltre, se il sistema e` in quiete all'istante $t_0=0$ (nel caso tempo invariante non si perde in generalita`)

$$y(t) = \int_0^t H_P(t-\tau)u(\tau)d\tau, \quad t \ge 0$$

ed operando la trasformata di Laplace membro a membro

$$\mathcal{L}[y(t)] = \mathcal{L}\left[\int_0^t H_P(t-\tau)u(\tau)d\tau\right]$$

$$Y(s) = H_P(s)U(s)$$

dove $H_P(s)$ e` la trasformata di Laplace della matrice di risposta impulsiva e coincide con la matrice di trasferimento del sistema.

Infine, nel caso in cui si disponga di una descrizione in eq. di stato con stato iniziale nullo

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0^-) = 0$$

 $y(t) = C(t)x(t) + D(t)u(t)$

e osservando che

$$y(t) = \int_{t_0}^t C(t)\Phi(t,\tau)B(\tau)u(\tau)d\tau + D(t)u(t)$$
$$= \int_{t_0}^t [C(t)\Phi(t,\tau)B(\tau)u(\tau) + D(t)\delta(t-\tau)u(\tau)]d\tau$$

otteniamo subito

$$H_P(t,\tau) = \begin{cases} C(t)\Phi(t,\tau)B(\tau) + D(t)\delta(t-\tau) & t \ge \tau \\ 0 & t < \tau \end{cases}$$

Calcolo del movimento nel caso lineare tempo-invariante a tempo continuo

Abbiamo visto che nel caso di un sistema dinamico lineare libero tempoinvariante

$$\dot{x}(t) = Ax(t), \quad x(t_0^-) = x_0$$

l'unica soluzione $\varphi(t,t_0,x_0)$ e` data da

$$\varphi(t, t_0, x_0) = \Phi(t - t_0)x_0$$

con

$$\Phi(t-t_0) = \left[I + A(t-t_0) + A^2 \frac{(t-t_0)^2}{2} + \dots + A^m \frac{(t-t_0)^m}{m!} + \dots \right]$$

$$= \left[I + \sum_{k=1}^{\infty} A^k \frac{(t-t_0)^k}{k!} \right]$$

Si definisce la matrice di transizione in termini dell'esponenziale di matrice

$$e^{A(t-t_0)} := \left[I + \sum_{k=1}^{\infty} A^k \frac{(t-t_0)^k}{k!} \right]$$

per cui

$$\varphi(t, t_0, x_0) = e^{A(t-t_0)}x_0$$

e quindi, ponendo $t_0 = 0$ si ha

$$\varphi(t,0,x_0) = e^{At}x_0$$

L'esponenziale di matrice gode delle seguenti importanti proprieta`

$$e^{At_1}e^{At_2} = e^{A(t_1+t_2)}, \ \forall t_1, t_2$$

$$Ae^{At} = e^{At}A$$

$$\left(e^{At}\right)^{-1} = e^{-At}$$

Possiamo ora particolarizzare la relazione tra descrizione interna in equazioni di stato ed esterna tramite la risposta impulsiva nel caso tempo-invariante; abbiamo quindi

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(t_0^-) = 0$$

 $y(t) = Cx(t) + Du(t)$

da cui

$$H_P(t-\tau) = \begin{cases} Ce^{A(t-\tau)}B + D\delta(t-\tau) & t \ge \tau \\ 0 & t < \tau \end{cases}$$

Calcolo di e^{At}

L'esponenziale di matrice e^{At} gioca un ruolo fondamentale e quindi il suo calcolo e` inevitabile per determinare il movimento dello stato.

Esempio 1

$$A = \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} \longrightarrow e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} t + \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \alpha \\ 0 & 0 \end{bmatrix} \frac{t^2}{2} + \cdots$$

$$= I + At = \begin{bmatrix} 1 & \alpha t \\ 0 & 1 \end{bmatrix}$$

Esempio 2

$$A = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \longrightarrow e^{At} = \begin{bmatrix} 1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \lambda_1^k & 0 \\ 0 & 1 + \sum_{k=1}^{\infty} \frac{t^k}{k!} \lambda_2^k \end{bmatrix}$$
$$= \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix}$$

Tuttavia in generale il calcolo e' molto piu' complicato.

Calcolo di $\,e^{At}\,$ col metodo della serie infinita

Sia A una matrice costante (reale o complessa) e sia

$$S_q(t) = I + \sum_{k=1}^{q} A^k \frac{t^k}{k!}$$

Si dimostra che ogni elemento della matrice $S_q(t)$ converge uniformemente su qualunque intervallo (-a,a) per $q\to\infty$

Inoltre
$$\dot{S}_q(t) = AS_q(t) = S_q(t)A$$

Quindi, per un t fissato, si puo` valutare $e^{At} \simeq S_q(t)$ per valori crescenti di q fino a che gli elementi di $S_q(t)$ non cambiano piu` in modo significativo

In alcuni casi particolari $e^{At}=S_{\overline{q}}(t)$ per un valore specifico \overline{q} . Questo e`il caso, per esempio, in cui tutti gli autovalori di A sono nulli per cui esiste $\overline{k} \leq n$ tale che $A^k=0, \, \forall k \geq \overline{k}$

Calcolo di $\,e^{At}\,$ col metodo della trasformazione di similitudine

Consideriamo
$$\dot{x}(t) = Ax(t)$$
, $x(0^-) = x_0 \longrightarrow \varphi(t, 0, x_0) = e^{At}x_0$

$$T \in \Re^{n \times n}, \ \det(T) \neq 0 \implies x = T\widehat{x}, \ \widehat{x} = T^{-1}x$$

$$\hat{x} = T^{-1}Ax = T^{-1}AT\hat{x}, \quad \hat{x}_0 = T^{-1}x_0$$

la cui soluzione e` $\psi(t,0,\hat{x}_0)=e^{T^{-1}ATt}T^{-1}x_0$ e quindi, definendo $J:=T^{-1}AT$ otteniamo

$$\varphi(t,0,x_0) = Te^{Jt}T^{-1}x_0$$

Supponiamo ora che che la trasformazione di similitudine sia tale che

$$J := T^{-1}AT$$

sia in forma canonica di Jordan

Consideriamo innanzitutto il caso in cui A ammetta la costruzione di una base di n autovettori v_i linearmente indipendenti associati agli autovalori λ_i , $i=1,\ldots,n$ (non necessariamente distinti)

Allora

$$T = [v_1 | v_2 | \cdots | v_n] \longrightarrow J = T^{-1}AT = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

e quindi

$$e^{Jt} = I + \sum_{k=1}^{\infty} J^k \frac{t^k}{k!} = \begin{bmatrix} e^{\lambda_1 t} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & e^{\lambda_n t} \end{bmatrix}$$

$$\varphi(t,0,x_0) = Te^{Jt}T^{-1}x_0 = T\begin{bmatrix} e^{\lambda_1 t} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & e^{\lambda_n t} \end{bmatrix} T^{-1}x_0$$

Consideriamo ora il caso generale in cui vi siano autovalori multipli. E` sempre possibile costruire n vettori v_i linearmente indipendenti tali che

che
$$T = \begin{bmatrix} v_1 | v_2 | \cdots | v_n \end{bmatrix} \longrightarrow J = T^{-1}AT = \begin{bmatrix} J_0 & \cdots & \cdots & 0 \\ J_1 & & & \\ & & \ddots & \\ 0 & \cdots & \ddots & J_s \end{bmatrix}$$
 dove $J_0 = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ & \ddots & \\ & & & \lambda_k \end{bmatrix}$

e $J_i, i \geq 1$ e` una matrice di dimensione $n_i \times n_i$ della forma

$$J_{i} = \begin{bmatrix} \lambda_{k+i} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{k+i} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \ddots & 1 \\ 0 & 0 & \cdots & \lambda_{k+i} \end{bmatrix}$$

in cui non necessariamente $\lambda_{k+i} \neq \lambda_{k+j}, i \neq j$ e

$$k + n_1 + \dots + n_s = n$$

Ora evidentemente

wente
$$e^{Jt} = \left[\begin{array}{cccc} e^{J_0t} & \cdots & \cdots & 0 \\ & e^{J_1t} & & & \\ & & \ddots & \\ 0 & \cdots & \cdots & e^{J_st} \end{array} \right]$$

dove
$$e^{J_0t} = \begin{bmatrix} e^{\lambda_1 t} & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & e^{\lambda_k t} \end{bmatrix}$$

$$\varphi(t,0,x_{0}) = Te^{Jt}T^{-1}x_{0} = T\begin{bmatrix} e^{J_{0}t} & \cdots & \cdots & 0 \\ & e^{J_{1}t} & & & \\ & & \ddots & \\ 0 & \cdots & \cdots & e^{J_{s}t} \end{bmatrix}T^{-1}x_{0}$$

Per quanto riguarda J_i , $i=1,\ldots,s$ si ha $J_i=\lambda_{k+i}I_i+N_i$ dove I_i e` la matrice identica di ordine $n_i \times n_i$ e N_i e` una matrice $n_i \times n_i$ nilpotente ($N_i^k = 0, \forall k \geq n_i$) data da

$$N_i = \left[egin{array}{ccccc} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & \ddots & \ddots & dots \ 0 & 0 & \cdots & \ddots & 1 \ 0 & 0 & \cdots & \cdots & 0 \end{array}
ight]$$

D'altra parte si ha subito

$$e^{J_i t} = e^{\lambda_{k+i} I_i t + N_i t} = e^{\lambda_{k+i} t} e^{N_i t}$$

Siccome $N_i^k=$ 0, $\forall k\geq n_i$, la matrice e^{N_it} si puo` determinare con il metodo della serie infinita, ovvero

$$e^{N_i t} = I + \sum_{k=1}^{n_i - 1} N_i^k \frac{t^k}{k!} = \begin{bmatrix} 1 & t & \frac{t^2}{2} & \cdots & \frac{t^{n_i - 1}}{(n_i - 1)!} \\ 0 & 1 & t & \cdots & \frac{t^{n_i - 2}}{(n_i - 2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \ddots & t \\ 0 & 0 & \cdots & \cdots & 1 \end{bmatrix}$$

e quindi

$$e^{J_{i}t} = e^{\lambda_{k+i}t} \begin{bmatrix} 1 & t & \frac{t^{2}}{2} & \cdots & \frac{t^{n_{i}-1}}{(n_{i}-1)!} \\ 0 & 1 & t & \cdots & \frac{t^{n_{i}-2}}{(n_{i}-2)!} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \ddots & t \\ 0 & 0 & \cdots & \cdots & 1 \end{bmatrix}, i = 1, \dots, s$$

Calcolo di $\,e^{At}\,$ mediante il teorema di Cayley-Hamilton

Data una matrice quadrata A di dimensione n e sia $p_A(\lambda)$ il suo poliniomio caratteristico della forma

$$p_A(\lambda) = \det(A - \lambda I) = \alpha_0 + \alpha_1 \lambda + \dots + \alpha_n \lambda^n$$

Si dimostra che

$$p_A(A) = \alpha_0 I + \alpha_1 A + \dots + \alpha_n A^n = 0$$

Ne consegue:

•
$$A^n = (-1)^{n+1} \left[\alpha_0 I + \alpha_1 A + \dots + \alpha_{n-1} A^{n-1} \right]$$

• Dato un qualunque polinomio $f(\lambda)$ esistono $\beta_0, \beta_1, \dots, \beta_{n-1}$ tali che

 $f(A) = \beta_0 I + \beta_1 A + \dots + \beta_{n-1} A^{n-1} = 0$

Infatti dividendo $f(\lambda)$ per $p_A(\lambda)$ abbiamo

$$f(\lambda) = p_A(\lambda)q(\lambda) + r(\lambda)$$

dove il grado di $r(\lambda)$ e` al piu` n-1 e siccome $p_A(A)=0$ si ha f(A)=r(A)

Vediamo ora come utilizzare il teorema di C.H. per determinare $\,e^{At}\,$ Si ha

$$e^{At} = I + \sum_{k=1}^{\infty} A^k \frac{t^k}{k!}, \quad t \in (-a, a)$$

Dal teorema di C.H. consegue che

$$f(A) = e^{At} = \sum_{k=0}^{n-1} \alpha_k(t) A^k$$

I coefficienti $\alpha_k(t)$ si determinano molto facilmente. Fattorizziamo il pol. caratteristico $p_A(\lambda) = (\lambda_1 - \lambda)^{m_1} \cdots (\lambda_p - \lambda)^{m_p}$ e consideriamo due funzioni $f(\lambda)$ e $g(\lambda)$ analitiche.

Se
$$\left. \frac{d^l}{d\lambda^l} f(\lambda) \right|_{\lambda = \lambda_i} = \left. \frac{d^l}{d\lambda^l} g(\lambda) \right|_{\lambda = \lambda_i}, \ l = 0, \dots, m_i - 1; \ i = 1, \dots, p$$

$$\longrightarrow f(A) = g(A)$$

Esempio. Sia
$$A = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix}$$
 e $f(A) = e^{At}$, $f(\lambda) = e^{\lambda t}$, $g(\lambda) = \alpha_1 \lambda + \alpha_0$
 $\lambda_1 = \lambda_2 = 0$, $m_1 = 2$

$$e^{\lambda_1 t} = 1 = \alpha_0$$

$$te^{\lambda_1 t} = t = \alpha_1$$

$$e^{At} = f(A) = g(A) = \alpha_1 A + \alpha_0 I = \begin{bmatrix} 1 - t & t \\ -t & 1 + t \end{bmatrix}$$

Calcolo di $\,e^{At}\,$ mediante la trasf. di Laplace

Consideriamo nuovamente $\dot{x}(t) = Ax(t), x(0^{-}) = x_0$ ed operando la

 $\mathcal{L}[\dot{x}(t)] = \mathcal{L}[Ax(t)]$

TdL ad ambo i membri

•
$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} \longrightarrow X(s) = \mathcal{L}[x(t)] = \begin{bmatrix} X_1(s) \\ \vdots \\ X_n(s) \end{bmatrix}$$

• $\mathcal{L}[Ax(t)] = A\mathcal{L}[x(t)]$

•
$$\mathcal{L}[\dot{x}(t)] = \begin{bmatrix} \mathcal{L}[\dot{x}_1(t)] \\ \vdots \\ \mathcal{L}[\dot{x}_n(t)] \end{bmatrix} = \begin{bmatrix} sX_1(s) - x_1(0^-) \\ \vdots \\ sX_n(s) - x_n(0^-) \end{bmatrix}$$

Quindi
$$\mathcal{L}[\dot{x}(t)] = \mathcal{L}[Ax(t)] \longrightarrow sX(s) - x(0^-) = AX(s)$$

$$\rightarrow$$
 $(sI - A)X(s) = x_0 \rightarrow X(s) = (sI - A)^{-1}x_0$

$$(sI - A)X(s) = x_0 \longrightarrow X(s) = (sI - A)^{-1}x_0$$

$$\varphi(t, 0, x_0) = \Phi(t, 0)x_0 = e^{At}x_0 = \mathcal{L}^{-1}\left[(sI - A)^{-1}\right]x_0$$

$$e^{At} = \mathcal{L}^{-1} \left[(sI - A)^{-1} \right]$$

Consideriamo poi $\dot{x}(t) = Ax(t) + Bu(t)$, $x(0^{-}) = x_{0}$ ed operando la TdL ad ambo i membri

$$\mathcal{L}[\dot{x}(t)] = \mathcal{L}[Ax(t)] + \mathcal{L}[Bu(t)]$$

$$\Rightarrow sX(s) - x(0^{-}) = AX(s) + BU(s)$$

$$\Rightarrow X(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s)$$

Utilizzando $e^{At}=\mathcal{L}^{-1}\left[(sI-A)^{-1}\right]$ e la proprieta` della TdL del prodotto, otteniamo immediatamente

$$\varphi(t,0,x_0,u(\cdot)) = \Phi(t,0)x_0 + \int_0^t \Phi(t,\tau)Bu(\tau)d\tau$$
$$= e^{At}x_0 + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

Modi di risposta

Consideriamo nuovamente $\dot{x}(t) = Ax(t), x(0^{-}) = x_{0}$ (*)

$$\rightarrow \varphi$$
(

$$\varphi(t,0,x_0) = \Phi(t,0)x_0 = e^{At}x_0$$

Ricordiamo

$$\det(sI - A) = \prod_{i=1}^{\sigma} (s - \lambda_i)^{n_i}$$

dove $\lambda_1, \ldots, \lambda_{\sigma}$ sono gli autovalori distinti di A ed n_i e` la molteplicita` algebrica di tali autovalori.

Ovviamente
$$\sum_{i=1}^{\sigma} n_i = n$$

Si dimostra che
$$e^{At}=\sum_{i=1}^{\sigma}\sum_{k=0}^{n_i-1}A_{ik}t^ke^{\lambda_it}$$

$$=\sum_{i=1}^{\sigma}\left[A_{i0}e^{\lambda_it}+A_{i1}te^{\lambda_it}+\cdots+A_{i,n_i-1}t^{n_1-1}e^{\lambda_it}\right]$$

dove
$$A_{ik} = \frac{1}{k!} \frac{1}{(n_i - 1 - k)!} \lim_{s \to \lambda_i} \left\{ \frac{d^{n_i - 1 - k}}{ds^{n_i - 1 - k}} \left[(s - \lambda_i)^{n_i} (sI - A)^{-1} \right] \right\}$$

La dimostrazione si basa sull'espansione in fratti semplici

Quindi: Parte 2, 48

 e^{At} puo` essere sempre espressa come somma di termini $A_{ik}t^ke^{\lambda_it}$

- $A_{ik}t^ke^{\lambda_it}$ vengono denominati modi di risposta del sistema (*)
- ullet se un autovalore λ_i ha molteplicita` algebrica n_i in generale ad esso possono essere associati n_i modi di risposta

$$A_{ik}t^k e^{\lambda_i t}, k = 0, 1, \dots, n_i - 1$$

- evidentemente possono esservi particolari scelte di x_0 per cui modi di risposta si combinano o non si manifestano del tutto nella risposta complessiva $\varphi(t,0,x_0)$
- quando gli autovalori di A sono distinti $\sigma=n, n_i=1, i=1,\dots,n$ e si ha $e^{At}=\sum_{i=1}^n A_i e^{\lambda_i t}$

dove
$$A_i = \lim_{s \to \lambda_i} \left[(s - \lambda_i)(sI - A)^{-1} \right]$$

Esempio 1
$$A = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix}$$
 $\lambda_1 = \lambda_2 = -2, n_1 = 2$

$$e^{At} = \sum_{k=0}^{1} A_{1k} t^k e^{-2t} = A_{10} e^{-2t} + A_{11} t e^{-2t}$$

$$(sI - A)^{-1} = \begin{bmatrix} s & -1 \\ 4 & s + 4 \end{bmatrix}^{-1} = \frac{1}{(s+2)^2} \begin{bmatrix} s+4 & 1 \\ -4 & s \end{bmatrix}$$

$$A_{10} = \lim_{s \to -2} \left\{ \frac{d}{ds} \left[(s+2)^2 (sI - A)^{-1} \right] \right\}$$

$$= \lim_{s \to -2} \left\{ \frac{d}{ds} \left[(s+2)^2 \frac{1}{(s+2)^2} \begin{bmatrix} s+4 & 1 \\ -4 & s \end{bmatrix} \right] \right\} = \lim_{s \to -2} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A_{11} = \lim_{s \to -2} \left[(s+2)^2 (sI - A)^{-1} \right]$$

$$= \lim_{s \to -2} \left[(s+2)^2 \frac{1}{(s+2)^2} \left[\begin{array}{cc} s+4 & 1 \\ -4 & s \end{array} \right] \right] = \lim_{s \to -2} \left\{ \left[\begin{array}{cc} s+4 & 1 \\ -4 & s \end{array} \right] \right\} = \left[\begin{array}{cc} 2 & 1 \\ -4 & -2 \end{array} \right]$$

$$e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e^{-2t} + \begin{bmatrix} 2 & 1 \\ -4 & -2 \end{bmatrix} t e^{-2t}$$

Parte 2, 50

Esempio 2
$$A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$$
 $\lambda_1 = -\frac{1}{2} + j\frac{\sqrt{3}}{2}; \lambda_2 = -\frac{1}{2} - j\frac{\sqrt{3}}{2}$

$$(sI-A)^{-1} = \begin{bmatrix} s & -1 \\ 1 & s+1 \end{bmatrix}^{-1} = \frac{1}{(s^2+s+1)} \begin{bmatrix} s+1 & 1 \\ -1 & s \end{bmatrix}$$

$$A_1 = \lim_{s \to -\frac{1}{2} + j\frac{\sqrt{3}}{2}} \left[\left(s + \frac{1}{2} - j\frac{\sqrt{3}}{2} \right) (sI - A)^{-1} \right]$$

$$= \lim_{s \to -\frac{1}{2} + j\frac{\sqrt{3}}{2}} \left[\left(s + \frac{1}{2} - j\frac{\sqrt{3}}{2} \right) \frac{1}{\left(s + \frac{1}{2} - j\frac{\sqrt{3}}{2} \right) \left(s + \frac{1}{2} + j\frac{\sqrt{3}}{2} \right)} \left[\begin{array}{c} s + 1 & 1 \\ -1 & s \end{array} \right] \right]$$

$$= \frac{1}{j\sqrt{3}} \begin{bmatrix} \frac{1}{2} + j\frac{\sqrt{3}}{2} & 1\\ -1 & -\frac{1}{2} + j\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$A_2 = \dots = -\frac{1}{j\sqrt{3}} \begin{bmatrix} \frac{1}{2} - j\frac{\sqrt{3}}{2} & 1\\ -1 & -\frac{1}{2} - j\frac{\sqrt{3}}{2} \end{bmatrix} = A_1^*$$

$$e^{At} = A_1 e^{\lambda_1 t} + A_1^* e^{\lambda_1^* t} = \dots$$

=
$$2(\text{Re}(A_1))(\text{Re}(e^{\lambda_1 t})) - 2(\text{Im}(A_1))(\text{Im}(e^{\lambda_1 t}))$$

$$=2e^{-\frac{1}{2}t}\left[\left[\begin{array}{cc} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{array}\right]\cos\frac{\sqrt{3}}{2}t - \left[\begin{array}{cc} -\frac{1}{2\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{2\sqrt{3}} \end{array}\right]\sin\frac{\sqrt{3}}{2}t\right]$$

Esempio 3
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\lambda_1 = \lambda_2 = 1, n_1 = 2$

$$e^{At} = \sum_{k=0}^{1} A_{1k} t^k e^t = A_{10} e^t + A_{11} t e^t$$

$$(sI-A)^{-1} = \begin{bmatrix} s-1 & 0 \\ 0 & s-1 \end{bmatrix}^{-1} = \frac{1}{(s-1)^2} \begin{bmatrix} s-1 & 0 \\ 0 & s-1 \end{bmatrix} = \begin{bmatrix} \frac{1}{s-1} & 0 \\ 0 & \frac{1}{s-1} \end{bmatrix}$$

$$A_{10} = \lim_{s \to 1} \left\{ \frac{d}{ds} \left[(s-1)^2 (sI - A)^{-1} \right] \right\}$$

$$= \lim_{s \to 1} \left\{ \frac{d}{ds} \left[(s-1)^2 \frac{1}{(s-1)^2} \left[\begin{array}{cc} s-1 & 0 \\ 0 & s-1 \end{array} \right] \right] \right\} = \lim_{s \to 1} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \right\} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

$$A_{11} = \lim_{s \to 1} \left[(s-1)^2 (sI - A)^{-1} \right]$$

$$= \lim_{s \to 1} \left[(s-1)^2 \frac{1}{(s-1)^2} \begin{bmatrix} s-1 & 0 \\ 0 & s-1 \end{bmatrix} \right] = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e^t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} t e^t$$

 $e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e^t + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} t e^t$ Non tutti i modi sono necessariamente presenti in e^{At} la presenza o meno di tutti i modi dipende dal numero e dimensione dei sottoblocchi di Jordan associati ad autovalori multipli

Parte 2, 52

Esempio 3 bis
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 $\lambda_1 = \lambda_2 = 1, n_1 = 2$

$$e^{At}$$
 =

$$e^{At} = \sum_{k=0}^{1} A_{1k} t^k e^t = A_{10} e^t + A_{11} t e^t$$

$$(sI-A)^{-1} = \begin{bmatrix} s-1 & -1 \\ 0 & s-1 \end{bmatrix}^{-1} = \frac{1}{(s-1)^2} \begin{bmatrix} s-1 & 1 \\ 0 & s-1 \end{bmatrix} = \begin{bmatrix} \frac{1}{s-1} & \frac{1}{(s-1)^2} \\ 0 & \frac{1}{s-1} \end{bmatrix}$$

$$A_{10} = \lim_{s \to 1} \left\{ \frac{d}{ds} \left[(s-1)^2 (sI - A)^{-1} \right] \right\}$$

$$= \lim_{s \to 1} \left\{ \frac{d}{ds} \left[(s-1)^2 \frac{1}{(s-1)^2} \left[\begin{array}{cc} s-1 & 1 \\ 0 & s-1 \end{array} \right] \right] \right\} = \lim_{s \to 1} \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \right\} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

$$A_{11} = \lim_{s \to 1} \left[(s-1)^2 (sI - A)^{-1} \right]$$

$$= \lim_{s \to 1} \left[(s-1)^2 \frac{1}{(s-1)^2} \begin{bmatrix} s-1 & 1 \\ 0 & s-1 \end{bmatrix} \right] = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e^t + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} t e^t$$

 $e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} e^t + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} t e^t$ Ora tutti i modi sono presenti in e^{At} a causa del blocco di Jordan di ordine 2

Diversa caratterizzazione dei modi di risposta nel caso di autovalori distinti

Vogliamo scrivere i modi di risposta nel caso di autovalori distinti in modo da rendere esplicite alcune proprieta` da cui consegue la presenza o meno nella risposta di alcuni modi.

In questo caso
$$\det(sI - A) = \prod_{i=1}^{n} (s - \lambda_i)$$
 e $e^{At} = \sum_{i=1}^{n} A_i e^{\lambda_i t}$

Si dimostra che $A_i = v_i \tilde{v}_i^{\top}$ dove

$$(\lambda_i I - A)v_i = 0$$
 v_i autovettore destro associato a λ_i

$$\tilde{v}_i^\top(\lambda_i I - A) = 0$$
 \tilde{v}_i^\top autovettore sinistro associato a λ_i

Infatti si vede subito che (autovalori distinti implica n autovettori l.i.)

$$\begin{aligned} Q := & [v_1 \,|\, v_2 \,|\, \cdots \,|\, v_n] \quad \Longrightarrow \quad P = Q^{-1} = \begin{bmatrix} \tilde{v}_1^\top \\ \vdots \\ \tilde{v}_n^\top \end{bmatrix}; \quad \tilde{v}_i^\top v_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \\ & (sI - A)^{-1} = [sI - Q \operatorname{diag}[\lambda_1, \dots, \lambda_n] Q^{-1}]^{-1} \\ & = Q[sI - \operatorname{diag}[\lambda_1, \dots, \lambda_n]]^{-1} Q^{-1} \\ & = Q \operatorname{diag}[(s - \lambda_1)^{-1}, \dots, (s - \lambda_n)^{-1}] Q^{-1} = \sum_{i=1}^n v_i \tilde{v}_i^\top (s - \lambda_i)^{-1} \end{aligned}$$

Ora, se lo stato iniziale e` "parallelo" ad uno degli autovettori $\ v_j$ di $\ A$ l'unico modo di risposta che si manifesta nel movimento dello stato e` $e^{\lambda_j t}$

$$x_0 = \alpha v_j \quad \Rightarrow \quad \varphi(t,0,x_0) = e^{At} x_0$$

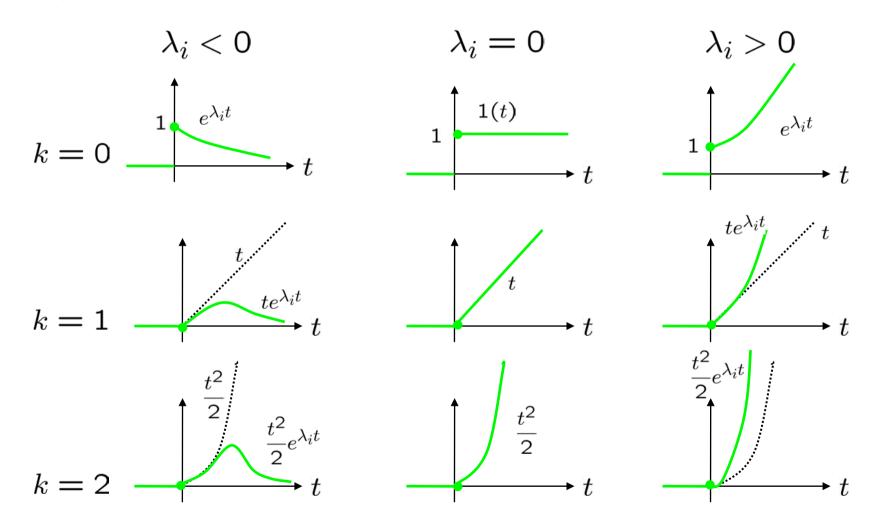
$$= v_1 \tilde{v}_1^\top x_0 e^{\lambda_1 t} + \dots + v_n \tilde{v}_n^\top x_0 e^{\lambda_n t} = \alpha v_j e^{\lambda_j t}$$
Esempio $A = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \quad \lambda_1 = -1, \ \lambda_2 = 1$

$$\Rightarrow \quad Q = [v_1 \mid v_2] = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}, \ Q^{-1} = \begin{bmatrix} \tilde{v}_1^\top \\ \tilde{v}_2^\top \end{bmatrix} = \begin{bmatrix} 1 & -1/2 \\ 0 & 1/2 \end{bmatrix}$$

$$e^{At} = v_1 \tilde{v}_1^\top e^{-t} + v_2 \tilde{v}_2^\top e^t = \begin{bmatrix} 1 & -1/2 \\ 0 & 0 \end{bmatrix} e^{-t} + \begin{bmatrix} 0 & 1/2 \\ 0 & 1 \end{bmatrix} e^t$$
e quindi se $x_0 = \alpha v_1 = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

il modo e^t non si manifesta nel movimento libero conseguente a tale stato iniziale

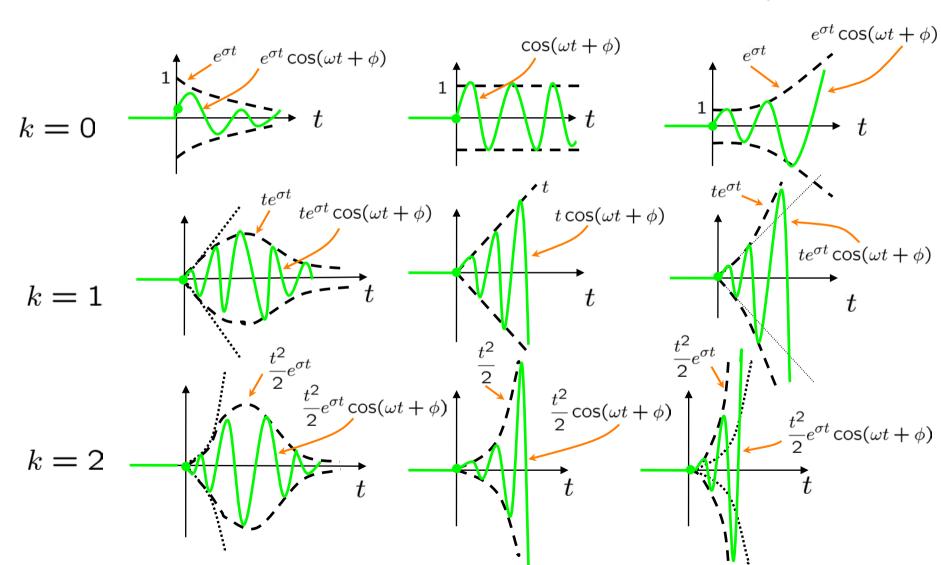
• $\lambda_i \in \Re$



•
$$\lambda \in \mathcal{C}$$
, $\lambda_1 = \sigma + j\omega$, $\lambda_2 = \sigma - j\omega$
 $\sigma < 0$

$$\sigma = 0$$

$$\sigma > 0$$



Prof. Thomas Parisini

Teoria dei sistemi e del controllo

Descrizione interna in equazioni di stato in relazione alla descrizione esterna ingresso-uscita

di sistemi lineari tempo-invarianti a tempo continuo

Ricordiamo:

si consideri un sistema lineare descritto da eq. di stato con stato iniziale nullo

$$\dot{x}(t) = A(t)x(t) + B(t)u(t), \quad x(t_0^-) = 0$$

 $y(t) = C(t)x(t) + D(t)u(t)$

e si aveva

$$H(t,\tau) = \begin{cases} C(t)\Phi(t,\tau)B(\tau) + D(t)\delta(t-\tau) & t \ge \tau \\ 0 & t < \tau \end{cases}$$

Inoltre nel caso tempo-invariante

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(t_0^-) = 0$$

 $y(t) = Cx(t) + Du(t)$

abbiamo

$$H_P(t-\tau) = \begin{cases} Ce^{A(t-\tau)}B + D\delta(t-\tau) & t \ge \tau \\ 0 & t < \tau \end{cases}$$

e

$$Y(s) = H_P(s)U(s)$$

Funzione di trasferimento

Riprendiamo alcuni concetti da Fond. di Automatica generalizzandoli quando necessario. Consideriamo

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0^{-}) = x_{0}$$

 $y(t) = Cx(t) + Du(t)$

Operando la trasf. di L. ad ambo i membri dell'eq. di stato:

$$sX(s) - x(0) = AX(s) + BU(s)$$

$$(sI - A)X(s) = x_0 + BU(s)$$

$$\begin{cases} X(s) = (sI - A)^{-1}x_0 + (sI - A)^{-1}BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases}$$

$$Y(s) = C(sI - A)^{-1}x_0 + [C(sI - A)^{-1}B + D]U(s)$$
 Funzione di

trasferimento

Se
$$x(0^-) = 0$$
 $p \times n$ $n \times n$ $n \times m$ $p \times m$ trasfer $Y(s) = \left[C(sI - A)^{-1}B + D\right]U(s) = H(s)U(s)$

Vediamo la struttura della funzione di trasferimento:

$$H(s) = \begin{bmatrix} H_{11}(s) & \cdots & H_{1m}(s) \\ \vdots & & \vdots \\ H_{i1}(s) & \cdots & H_{im}(s) \\ \vdots & & \vdots \\ H_{p1}(s) & \cdots & H_{pm}(s) \end{bmatrix}^{p}$$

Considerando ora la componente i-esima del vettore di uscita

$$Y_i(s) = \sum_{j=1}^m H_{ij}(s)U_j(s) = H_{i1}(s)U_1(s) + H_{i2}(s)U_2(s) + \cdots$$

Per cui

$$x(0^-) = 0$$

 $u_k(t) = 0, \ k \neq j$ \rightarrow $H_{ij}(s) = \frac{Y_i(s)}{U_j(s)}$

(sovrapposizione effetti)

Funzione di trasferimento di sistemi equivalenti

Ricordiamo

$$(A, B, C, D) \sim (\widehat{A}, \widehat{B}, \widehat{C}, D)$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

$$T \in \Re^{n \times n}, \ \det(T) \neq 0$$

$$x = T\hat{x}, \quad \hat{x} = T^{-1}x$$

$$\begin{cases} \dot{\hat{x}} = T^{-1}AT\hat{x} + T^{-1}Bu \\ y = CT\hat{x} + Du \end{cases}$$

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases} \longleftrightarrow \begin{cases} \dot{\hat{x}} = \hat{A}\hat{x} + \hat{B}u \\ y = \hat{C}\hat{x} + Du \end{cases}$$

$$\hat{H}(s) = \hat{C}(sI - \hat{A})^{-1}\hat{B} + \hat{D}$$

$$= C \left[T \left(sI - T^{-1}AT \right)^{-1} T^{-1} \right] B + D$$

$$= C \left[T \left(sT^{-1}T - T^{-1}AT \right)^{-1} T^{-1} \right] B + D$$

$$= C \left[T \left(T^{-1}(sI - A)T \right)^{-1} T^{-1} \right] B + D$$

$$= C \left[TT^{-1} \left(sI - A \right)^{-1} TT^{-1} \right] B + D$$

$$= C \left[(sI - A)^{-1} \right] B + D$$

$$= H(s)$$

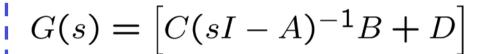
La funzione di trasferimento non dipende dalla particolare scelta di variabili di stato considerata per la rappresentazione interna

Riassumendo:

Rappresentazione Interna

$$\begin{cases} \dot{x} = Ax + Bu \\ y = Cx + Du \end{cases}$$

Rappresentazione Esterna



$$Y(s) = G(s)U(s)$$

$$(\operatorname{con} x(0^{-}) = 0)$$

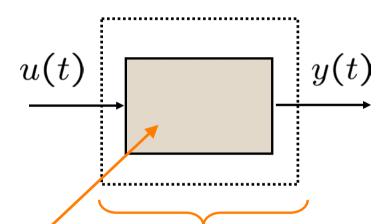
"Realizzazione"

Rappresentazione Interna

$\underbrace{u(t)}_{(A,B,C,D)}\underbrace{y(t)}_{}$

Si tiene conto della struttura "interna" del sistema

Rappresentazione Esterna



Rappresentazione IN/OUT del sistema

Funzione di trasferimento, risposta impulsiva

Proprieta` della FDT nel caso scalare

Riprendiamo da Fond. di Automatica alcune proprieta:

$$H(s) = C\left[(sI - A)^{-1}\right]B + D$$

$$(sI - A)^{-1} = \begin{bmatrix} (s) - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & (s) - a_{22} & & \vdots \\ \vdots & & \ddots & \\ -a_{n1} & \cdots & (s) - a_{nn} \end{bmatrix}^{-1}$$

Nel caso di ingresso ed uscita scalari:

Matrice compl. algebrici

$$(sI - A)^{-1} = \frac{1}{\det(sI - A)}K(s)$$

- $\det(sI A) = \varphi(s)$ polinomio di grado n
- $K(s) = \begin{bmatrix} k_{ij}(s), i, j = 1, \dots, n \end{bmatrix}$ $k_{ij}(s)$ polinomio di grado $< n, \ \forall i, j$

•
$$C(sI - A)^{-1}B = \frac{1}{\det(sI - A)}\underbrace{CK(s)B}_{M(s)} = \frac{M(s)}{\varphi(s)}$$

M(s) polinomio di grado < n

Quindi:

$$H(s) = C(sI - A)^{-1}B + D = \frac{M(s)}{\varphi(s)} + D$$
$$= \frac{M(s) + D\varphi(s)}{\varphi(s)} = \frac{N(s)}{\varphi(s)}$$

- N(s) polinomio di grado n
- se D=0 $N(s) \quad \text{polinomio di grado} < n$

In conclusione (caso scalare):

•
$$G(s) = \frac{N(s)}{\varphi(s)}$$
 funzione razionale (rapporto di polinomi) in s

- $\varphi(s)=\det{(sI-A)}$ polinomio di grado n• N(s) ha grado $m\leq n$ $=n \quad \text{solo se} \ D\neq 0$

salvo cancellazioni

Se ci sono fattori comuni:

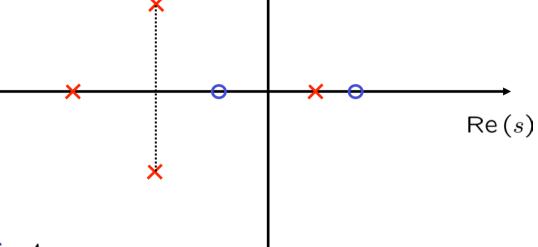
$$H(s) = \frac{\bar{N}(s)}{\bar{\varphi}(s)}$$

- $\bar{\varphi}(s)$ e` un fattore di $\varphi(s)$ di grado $\nu < n$
- $\bar{N}(s)$ ha grado $m<\nu$ $=\nu \quad {\rm solo~se} \ D\neq 0$

Poli e zeri di una FDT nel caso scalare

- Poli: radici di $\varphi(s)$ \times
- Zeri: radici di N(s) •

$$H(s) = \frac{N(s)}{\varphi(s)}$$



Im(s)

- I poli sono autovalori di A
- Un autovalore di A puo` non essere un polo in caso di cancellazioni (vedi esempi)
- Il caso con piu` ingressi ed uscite richiede alcune cautele aggiuntive

Esempio 1

$$\begin{cases} \dot{x} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 1 \end{bmatrix} x \end{cases}$$
 $n = 2$

$$H(s) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s-1 & 0 \\ -1 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \frac{1}{(s-1)(s+1)} \begin{bmatrix} s+1 & 0 \\ 1 & s-1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$= \frac{(s-1)}{(s-1)(s+1)} = \frac{1}{s+1}$$

$$\bar{\varphi}(s) = s + 1$$
 e` un fattore di $\varphi(s) = (s + 1)(s - 1)$

di grado 1 < 2

$$\begin{cases} \dot{x}_1 = x_1 \\ \dot{x}_2 = x_1 - x_2 + u \\ y = x_1 + x_2 \end{cases} \qquad x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\dot{x}_1 = x_1 \qquad \qquad x_1(t) = 0, \forall t \ge 0$$

$$\begin{cases} \dot{x}_2 = x_1 - x_2 + u \\ y = x_1 + x_2 \end{cases}$$

$$H(s) = \frac{1}{s+1}$$

- La parte della dinamica descritta da $x_1\,$ e` "nascosta"
- Come si vedra` piu` avanti nel corso la presenza di dinamica "nascosta" e` legata alla non minimalita` della descrizione in eq. di stato (raggiungibilita`, indistinguibilita`)

Esempio 2

$$\begin{cases} \dot{x} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u \\ y = \begin{bmatrix} 0 & 1 \end{bmatrix} x \end{cases}$$
 $n = 2$

$$G(s) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s-1 & -1 \\ 0 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \frac{1}{(s-1)(s+1)} \begin{bmatrix} s+1 & 1 \\ 0 & s-1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= \frac{(s-1)}{(s-1)(s+1)} = \frac{1}{s+1}$$

$$\bar{\varphi}(s) = s+1$$
 e` un fattore di $\varphi(s) = (s+1)(s-1)$

di grado 1 < 2



 Nuovamente, come vedremo piu` avanti nel corso la presenza di dinamica "nascosta" e` legata alla non minimalita` della descrizione in eq. di stato (raggiungibilita`, indistinguibilita`)

FDT nel caso generale - considerazioni

Abbiamo visto che nel caso di piu` ingressi ed uscite si ha

$$Y(s) = \underbrace{\begin{bmatrix} C(sI - A)^{-1}B + D \end{bmatrix} U(s)}_{p \times m}$$

$$H(s) = \begin{bmatrix} H_{11}(s) & \cdots & H_{1m}(s) \\ \vdots & & \vdots \\ H_{i1}(s) & \cdots & H_{im}(s) \\ \vdots & & \vdots \\ H_{p1}(s) & \cdots & H_{pm}(s) \end{bmatrix}^{p}$$

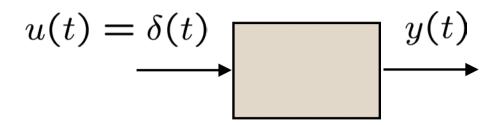
Il concetto di polo e zero tuttavia si complica.

Esempio 3

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} x + \begin{bmatrix} 0 & -1/2 \\ 1 & 1/2 \end{bmatrix} u & n = 2 \\ y = \begin{bmatrix} -3 & 3 \end{bmatrix} x & \\ H(s) = \begin{bmatrix} -3 & 3 \end{bmatrix} \begin{bmatrix} s & -1 \\ 1 & s+2 \end{bmatrix}^{-1} \begin{bmatrix} 0 & -1/2 \\ 1 & 1/2 \end{bmatrix} & \\ = \begin{bmatrix} -3 & 3 \end{bmatrix} \frac{1}{(s+1)^2} \begin{bmatrix} s+2 & 1 \\ -1 & s \end{bmatrix} \begin{bmatrix} 0 & -1/2 \\ 1 & 1/2 \end{bmatrix} & \\ = \begin{bmatrix} \frac{3}{s+1} \frac{3(s-1)}{(s+1)^2} \end{bmatrix} \begin{bmatrix} 0 & -1/2 \\ 1 & 1/2 \end{bmatrix} = \begin{bmatrix} \frac{3(s-1)}{(s+1)^2} \frac{3}{s+1} \end{bmatrix}$$

Come vedremo i poli di H(s) in questo caso coincidono con gli autovalori di A e quindi tutta la dinamica "si vede" nella FdT. Tuttavia basta modificare le matrici B e C perche si manifesti il problema di dinamiche nascoste, ovvero di autovalori di A non presenti nell'insieme di poli di H(s)

Definizione alternativa di FDT nel caso scalare



$$x(0^{-}) = 0$$

$$u(t) = \delta(t)$$

$$U(s) = \mathcal{L}[\delta(t)] = 1$$

$$H(s) = \frac{Y(s)}{U(s)} = \frac{Y(s)}{1} = Y(s)$$

ovvero $H(s) = \mathcal{L}$ [risposta all'impulso]

Calcolo del movimento nel caso lineare tempo-invariante a tempo discreto

Si consideri un sistema dinamico lineare libero a tempo discreto

$$x(k+1) = A(k)x(k), \quad x(k_0) = x_0$$

Ricordiamo
$$x(k) = \varphi(k, k_0, x_0) = \Phi(k, k_0)x_0$$

con
$$\Phi(k, k_0) = \prod_{j=k_0}^{k-1} A(j), \quad k > k_0; \quad \Phi(k_0, k_0) = I$$

Quindi, avendo

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad x(k_0) = x_0$$

 $y(k) = C(k)x(k) + D(k)u(k)$

otteniamo

$$x(k) = \Phi(k, k_0)x_0 + \sum_{j=k_0}^{k-1} \Phi(k, j+1)B(j)u(j), k > k_0$$

$$y(k) = C(k)\Phi(k, k_0)x_0$$

$$+ \sum_{j=k_0}^{k-1} C(k)\Phi(k, j+1)B(j)u(j) + D(k)u(k), k > k_0$$

Nel caso di un sistema dinamico lineare libero a tempo discreto tempo-

invariante

$$x(k+1) = Ax(k), \quad x(k_0) = x_0$$

Abbiamo

$$x(k) = \varphi(k, k_0, x_0) = \Phi(k - k_0)x_0$$

con

$$\Phi(k-k_0) = A^{(k-k_0)}, \quad k \ge k_0$$

Quindi, avendo

$$x(k+1) = Ax(k) + Bu(k), \quad x(k_0) = x_0$$

 $y(k) = Cx(k) + Du(k)$

otteniamo

$$x(k) = A^{(k-k_0)}x_0 + \sum_{j=k_0}^{k-1} A^{k-(j+1)}Bu(j), k > k_0$$

$$y(k) = CA^{(k-k_0)}x_0 + \sum_{j=k_0}^{k-1} CA^{k-(j+1)}Bu(j) + Du(k), k > k_0$$

Modi di risposta

Analogamente al caso a tempo continuo si esprime $A^{(k-k_0)}$ in "fratti semplici"; poniamo $k_0=0$

Ricordiamo
$$\det(zI - A) = \prod_{i=1}^{\sigma} (z - \lambda_i)^{n_i}$$

dove $\lambda_1,\ldots,\lambda_\sigma$ sono gli autovalori distinti di A ed n_i e` la molteplicita` algebrica di tali autovalori.

Ovviamente
$$\sum_{i=1}^{\sigma} n_i = n$$

Si dimostra che

$$A^{k} = \sum_{i=1}^{\sigma} \left[A_{i0} \lambda_{i}^{k} 1(k) + \sum_{l=1}^{n_{i}-1} A_{il} k(k-1) \cdots (k-l+1) \lambda_{i}^{k-l} 1(k-l) \right]$$

dove
$$A_{il} = \frac{1}{l!} \frac{1}{(n_i - 1 - l)!} \lim_{z \to \lambda_i} \left\{ \frac{d^{n_i - 1 - l}}{dz^{n_i - 1 - l}} \left[(z - \lambda_i)^{n_i} (zI - A)^{-1} \right] \right\}$$

La dimostrazione si basa sull'espansione in fratti semplici

Quindi:

Parte 2, 82

 A^k puo` essere sempre espressa come somma di termini $A_{il}k! \left(egin{array}{c} k \\ l \end{array}
ight) \lambda_i^k$

- ullet $A_{il}k! \left(egin{array}{c} k \\ l \end{array}
 ight) \lambda_i^k$ vengono denominati modi di risposta del sistema
- ullet se un autovalore λ_i ha molteplicita` algebrica n_i in generale ad esso possono essere associati n_i modi di risposta

$$A_{il}k! \left(egin{array}{c} k \ l \end{array}\right) \lambda_i^k, \ l=0,1,\ldots,n_i-1$$

- ullet evidentemente possono esservi particolari scelte di x_0 per cui modi di risposta si combinano o non si manifestano del tutto nella risposta complessiva
- quando gli autovalori di A sono distinti $\sigma=n, n_i=1, i=1,\ldots,n$ e si ha n

$$A^k = \sum_{i=1}^n A_i \lambda_i^k$$

dove
$$A_i = \lim_{z \to \lambda_i} \left[(z - \lambda_i)(zI - A)^{-1} \right]$$

Diversa caratterizzazione dei modi di risposta nel caso di arte 2, 83 autovalori distinti

Come nel caso a tempo continuo vogliamo scrivere i modi di risposta nel caso di autovalori distinti in modo da rendere esplicite alcune proprieta` da cui consegue la presenza o meno nella risposta di alcuni modi.

In questo caso
$$\det(zI - A) = \bigcap_{i=1}^{n} (z - \lambda_i)$$
 e $A^k = \sum_{i=1}^{n} A_i \lambda_i^k$

Si dimostra che $A_i = v_i \tilde{v}_i^{\top}$ dove

$$(\lambda_i I - A)v_i = 0$$
 v_i autovettore destro associato a λ_i

$$\tilde{v}_i^\top(\lambda_i I - A) = 0$$
 \tilde{v}_i^\top autovettore sinistro associato a λ_i

Infatti si vede subito che (autovalori distinti implica n autovettori l.i.)

$$\begin{aligned} Q := & [v_1 \,|\, v_2 \,|\, \cdots \,|\, v_n] \quad \Longrightarrow \quad P = Q^{-1} = \begin{bmatrix} \tilde{v}_1^\top \\ \vdots \\ \tilde{v}_n^\top \end{bmatrix}; \quad \tilde{v}_i^\top v_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \\ & (zI - A)^{-1} = [zI - Q \operatorname{diag}\left[\lambda_1, \dots, \lambda_n\right] Q^{-1}]^{-1} \\ & = Q[zI - \operatorname{diag}\left[\lambda_1, \dots, \lambda_n\right]]^{-1} Q^{-1} \\ & = Q \operatorname{diag}\left[(z - \lambda_1)^{-1}, \dots, (z - \lambda_n)^{-1}\right] Q^{-1} = \sum_{i=1}^n v_i \tilde{v}_i^\top (z - \lambda_i)^{-1} \end{aligned}$$

Ora, se lo stato iniziale e` "parallelo" ad uno degli autovettori v_j di A l'unico modo di risposta che si manifesta nel movimento dello stato e` $\lambda_j^{\ k}$

$$x_0 = \alpha v_j \quad \Rightarrow \quad x(k) = A^k x_0$$

$$= v_1 \tilde{v}_1^\top x_0 \lambda_1^k + \dots + v_n \tilde{v}_n^\top x_0 \lambda_n^k = \alpha v_j \lambda_j^k$$
Esempio $A = \begin{bmatrix} -1 & 2 \\ 0 & 1 \end{bmatrix} \quad \lambda_1 = -1, \ \lambda_2 = 1$

$$Q = \begin{bmatrix} v_1 \mid v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \ Q^{-1} = \begin{bmatrix} \tilde{v}_1^\top \\ \tilde{v}_2^\top \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$$

$$A^k = v_1 \tilde{v}_1^\top \lambda_1^k + v_2 \tilde{v}_2^\top \lambda_2^k = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} (-1)^k + \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} 1^k$$
e quindi se $x_0 = \alpha v_1 = \alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

il modo 1^k non si manifesta nel movimento libero conseguente a tale stato iniziale

Osservazioni

- La determinazione dell'evoluzione dello stato in forma numerica e` molto semplice
- il calcolo di

$$\Phi(k-k_0) = A^{(k-k_0)}, \quad k \ge k_0$$

si puo` affrontare anche con tecniche viste per il calcolo di $e^{A(t-t_0)}$ anche se spesso non e` necessario; per esempio la tecnica facente uso del teorema di Cayley-Hamilton puo` rivelarsi utile (si vedano gli esempi durante le esercitazioni)

In analogia col caso a tempo continuo, e` utile l'analisi di $A^{(k-k_0)}$ tramite trasformazione di similitudine

Calcolo di $A^{(k-k_0)}$ col metodo della trasformazione di similitudine

Consideriamo
$$x(k+1) = Ax(k)$$
, $x(0) = x_0 \implies x(k) = A^k x_0$

$$T \in \Re^{n \times n}, \ \det(T) \neq 0 \implies x = T\hat{x}, \ \hat{x} = T^{-1}x$$

$$\hat{x}(k+1) = T^{-1}Ax(k) = T^{-1}AT\hat{x}(k), \quad \hat{x}_0 = T^{-1}x_0$$
la cui soluzione e` $\hat{x}(k) = (T^{-1}AT)^k T^{-1}x_0$ e quindi, definendo $J := T^{-1}AT$ otteniamo
$$x(k) = TJ^k T^{-1}x_0$$

Supponiamo ora che che la trasformazione di similitudine sia tale che

$$J := T^{-1}AT$$

sia in forma canonica di Jordan

Consideriamo innanzitutto il caso in cui A ammetta la costruzione di una base di n autovettori v_i linearmente indipendenti associati agli autovalori λ_i , $i=1,\ldots,n$ (non necessariamente distinti)

Allora

$$T = [v_1 | v_2 | \cdots | v_n] \longrightarrow J = T^{-1}AT = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

e quindi

$$J^k = \left[\begin{array}{ccc} \lambda_1^k & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \lambda_n^k \end{array} \right]$$

$$x(k) = TJ^kT^{-1}x_0 = T\begin{bmatrix} \lambda_1^k & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \lambda_n^k \end{bmatrix}T^{-1}x_0$$

Consideriamo ora il caso generale in cui vi siano autovalori multipli. E` sempre possibile costruire n vettori v_i linearmente indipendenti tali che

che
$$T = \begin{bmatrix} v_1 | v_2 | \cdots | v_n \end{bmatrix} \longrightarrow J = T^{-1}AT = \begin{bmatrix} J_0 & \cdots & \cdots & 0 \\ J_1 & & & \\ & & \ddots & \\ 0 & \cdots & \ddots & J_s \end{bmatrix}$$
 dove $J_0 = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ & \ddots & \\ & & & \lambda_k \end{bmatrix}$

e $J_i, i \geq 1$ e` una matrice di dimensione $n_i \times n_i$ della forma

$$J_{i} = \begin{bmatrix} \lambda_{k+i} & 1 & 0 & \cdots & 0 \\ 0 & \lambda_{k+i} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & \ddots & 1 \\ 0 & 0 & \cdots & \lambda_{k+i} \end{bmatrix}$$

in cui non necessariamente $\lambda_{k+i} \neq \lambda_{k+j}, i \neq j$ e

$$k + n_1 + \dots + n_s = n$$

Ora evidentemente
$$J^k = \begin{bmatrix} J_0^k & \cdots & \cdots & 0 \\ & J_1^k & & & \\ & & \ddots & \\ 0 & \cdots & \cdots & J_s^k \end{bmatrix}$$
 dove
$$J_0^k = \begin{bmatrix} \lambda_1^k & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \lambda_r^k \end{bmatrix}$$

$$dove J_0^k = \begin{bmatrix} \lambda_1^k & \cdots & 0 \\ & \ddots & \\ 0 & \cdots & \lambda_r^k \end{bmatrix}$$

$$x(k) = TJ^{k}T^{-1}x_{0} = T\begin{bmatrix} J_{0}^{k} & \cdots & \cdots & 0 \\ & J_{1}^{k} & & \\ & & \ddots & \\ 0 & \cdots & \cdots & J_{s}^{k} \end{bmatrix} T^{-1}x_{0}$$

Per quanto riguarda J_i , $i=1,\ldots,s$ si ha $J_i=\lambda_{r+i}I_i+N_i$ dove I_i e` la matrice identica di ordine $n_i \times n_i$ e N_i e` una matrice $n_i \times n_i$ nilpotente ($N_i^k = 0, \forall k \geq n_i$) data da

$$N_i = \left[egin{array}{cccccc} 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 1 & \cdots & 0 \ dots & dots & \ddots & \ddots & dots \ 0 & 0 & \cdots & \ddots & 1 \ 0 & 0 & \cdots & \cdots & 0 \end{array}
ight]$$

D'altra parte si ha subito

$$J_i^k = (\lambda_{r+i}I_i + N_i)^k$$

= $\lambda_{r+i}I + k\lambda_{r+i}^{k-1} + \frac{k(k-1)}{2!}\lambda_{r+i}^{k-2}N_i^2 + \dots + k\lambda_{r+i}N_i^{k-1} + N_i^k$

e quindi e` possibile definire i modi di risposta a tempo discreto

come termini del tipo

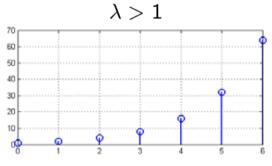
$$\lambda^k, \left(\begin{array}{c}k\\n_i\end{array}\right) \lambda_i^{k-n_i}$$

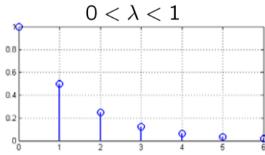
Le dimostrazioni sono analoghe al caso a tempo continuo con gli ovvi cambiamenti (si veda la bibliografia).

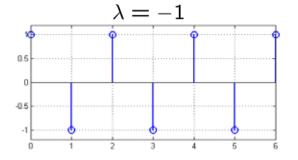
Studio qualitativo del termine $\left(egin{array}{c} k \\ n \end{array} \right) \lambda^{k-n}$

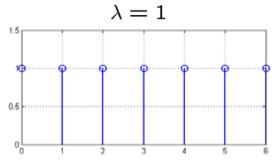
$$\left(\begin{array}{c} k\\ n \end{array}\right)\lambda^{k-n}$$

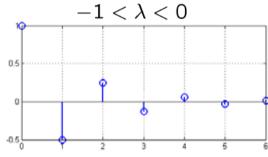
a) $\lambda \in \mathbb{R}$ poli semplici

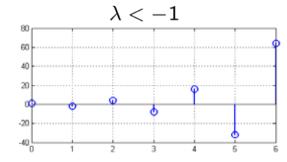


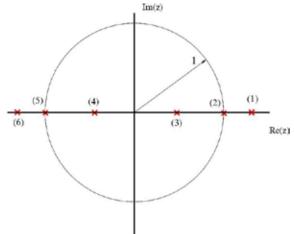






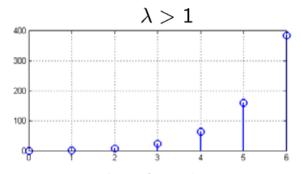


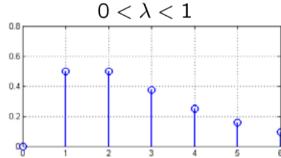


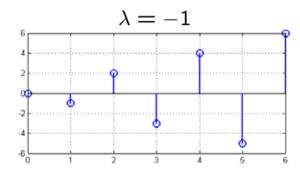


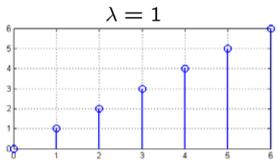
Studio qualitativo del termine $\left(egin{array}{c} k \\ n \end{array} \right) \lambda^{k-n}$

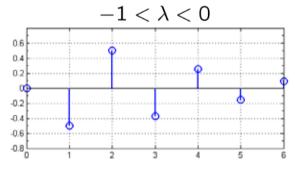
a) $\lambda \in \mathbb{R}$ poli multipli (doppi)

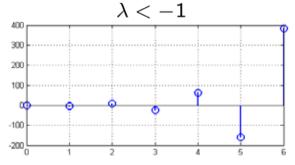


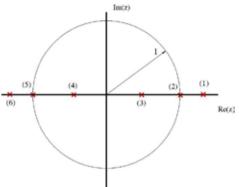






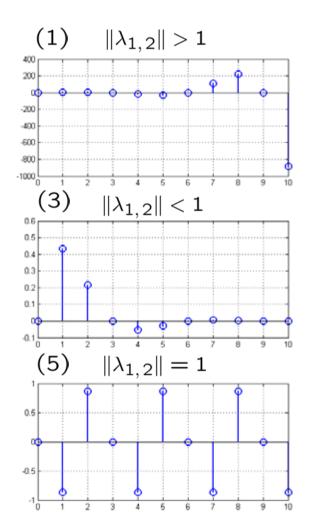


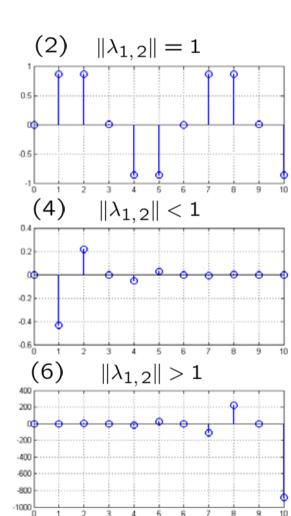


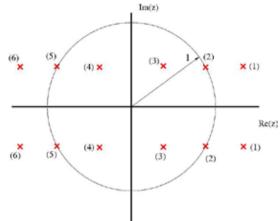


Studio qualitativo del termine $\binom{k}{n} \lambda^{k-n}$

b) $\lambda_{1,2} \in \mathbb{C}$ poli semplici



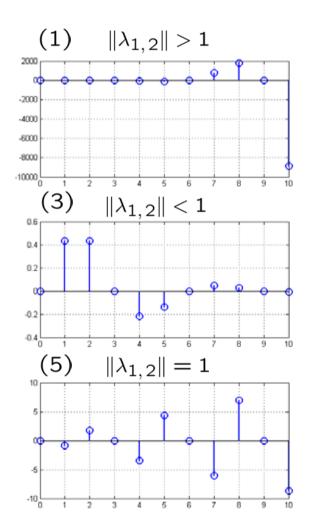


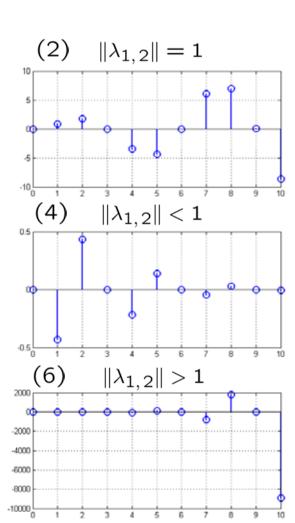


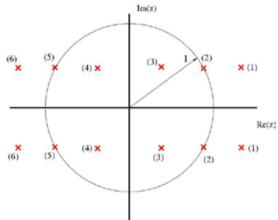
Studio qualitativo del termine $\binom{k}{n} \lambda^{k-n}$

$$\left(\begin{array}{c} k \\ n \end{array}\right) \lambda^{k-n}$$

b) $\lambda \in \mathbb{C}$ poli multipli (doppi)







Descrizione interna in equazioni di stato in relazione alla descrizione esterna ingresso-uscita

di sistemi lineari tempo-invarianti a tempo discreto

Ricordiamo:

si consideri un sistema lineare descritto da eq. di stato con stato iniziale nullo

$$x(k+1) = A(k)x(k) + B(k)u(k), \quad x(k_0) = 0$$

 $y(k) = C(k)x(k) + D(k)u(k)$

e si aveva

$$H(k,j) = \begin{cases} C(k)\Phi(k,j+1)B(j), & k>j\\ D(k) & k=j\\ 0 & k$$

Inoltre nel caso tempo-invariante

$$x(k+1) = Ax(k) + Bu(k), \quad x(k_0) = 0$$

 $y(k) = Cx(k) + Du(k)$

abbiamo

$$H(k-j) = \begin{cases} CA^{k-(j+1)}B, & k>j\\ D & k=j\\ 0 & k$$

Funzione di trasferimento

Consideriamo
$$x(k+1) = Ax(k) + Bu(k)$$
, $x(k_0) = x_0$
 $y(k) = Cx(k) + Du(k)$

Operando la Z-trasformata ad ambo i membri dell' eq. di stato:

$$z[X(z) - x_0] = AX(z) + BU(z)$$

$$(zI - A)X(z) = zx_0 + BU(z)$$

$$\begin{cases} X(z) = (zI - A)^{-1}z x_0 + (zI - A)^{-1}BU(z) \\ Y(z) = CX(z) + DU(z) \end{cases}$$

$$Y(z) = C(zI - A)^{-1}z x(0) + \left[C(zI - A)^{-1}B + D\right]U(z)$$

Se
$$x_0 = 0$$

Funzione di trasferimento $Y(z) = \left[C(zI - A)^{-1}B + D\right]U(z) = H(z)U(z)$

Vediamo la struttura della funzione di trasferimento:

$$H(z) = \begin{bmatrix} H_{11}(z) & \cdots & H_{1m}(z) \\ \vdots & & \vdots \\ H_{i1}(z) & \cdots & H_{im}(z) \\ \vdots & & \vdots \\ H_{p1}(z) & \cdots & H_{pm}(z) \end{bmatrix}^{p}$$

Considerando ora la componente i-esima del vettore di uscita

$$Y_i(z) = \sum_{j=1}^m H_{ij}(z)U_j(z) = H_{i1}(z)U_1(z) + H_{i2}(z)U_2(z) + \cdots$$

Per cui

$$\begin{array}{ccc}
x(0) = 0 \\
u_r(k) = 0, & r \neq j
\end{array}$$

$$H_{ij}(z) = \frac{Y_i(z)}{U_j(z)}$$

(sovrapposizione effetti)

Funzione di trasferimento di sistemi equivalenti

In perfetta analogia con il caso a tempo continuo:

$$(A, B, C, D) \sim (\widehat{A}, \widehat{B}, \widehat{C}, D)$$

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) & T \in \Re^{n \times n}, \ \det(T) \neq 0 \\ y(k) = Cx(k) + Du(k) & R = T\widehat{m}, \ \widehat{m} = T^{-1} \end{cases}$$

$$x = T\hat{x}, \quad \hat{x} = T^{-1}x$$

$$\begin{cases} \hat{x}(k+1) = T^{-1}AT\hat{x}(k) + T^{-1}Bu(k) \\ y(k) = CT\hat{x}(k) + Du(k) \end{cases}$$

$$\begin{cases} x(k+1) = Ax(k) + Bu(k) \\ y(k) = Cx(k) + Du(k) \end{cases} \longleftrightarrow \begin{cases} \hat{x}(k+1) = \hat{A}\hat{x}(k) + \hat{B}u(k) \\ y(k) = \hat{C}\hat{x}(k) + Du(k) \end{cases}$$

$$\hat{H}(z) = \hat{C}(zI - \hat{A})^{-1}\hat{B} + \hat{D}$$

$$= C \left[T \left(zI - T^{-1}AT \right)^{-1} T^{-1} \right] B + D$$

$$= C \left[T \left(zT^{-1}T - T^{-1}AT \right)^{-1} T^{-1} \right] B + D$$

$$= C \left[T \left(T^{-1}(zI - A)T \right)^{-1} T^{-1} \right] B + D$$

$$= C \left[TT^{-1} \left(zI - A \right)^{-1} TT^{-1} \right] B + D$$

$$= C \left[(zI - A)^{-1} \right] B + D$$

$$= H(z)$$

La funzione di trasferimento non dipende dalla particolare scelta di variabili di stato considerata per la rappresentazione interna

Proprieta` della FDT nel caso a tempo discreto

... perfettamente analoghe a quelle viste a tempo continuo

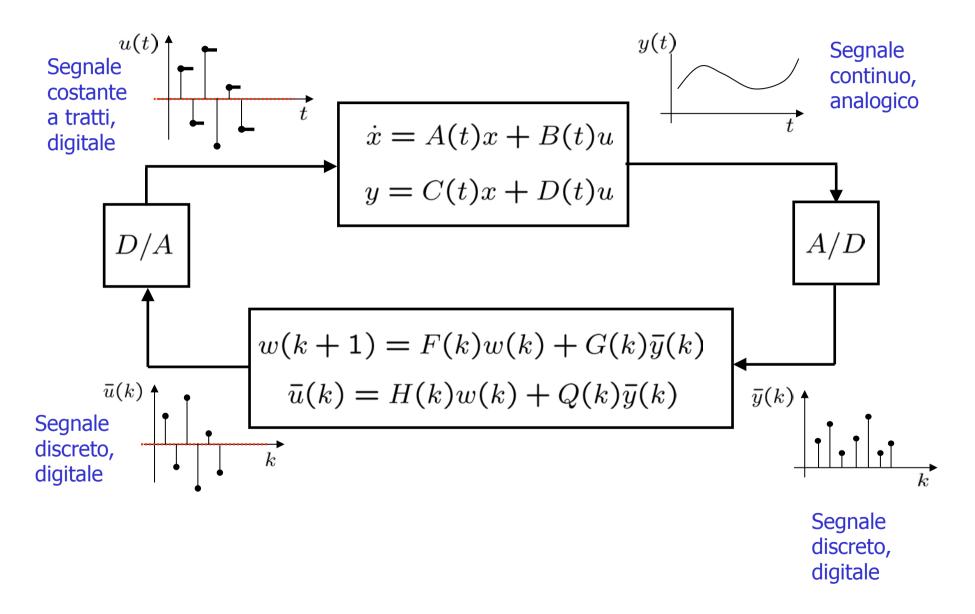
Caso notevole:

Sistemi a tempo discreto ottenuti da

campionamento di

Sistemi a tempo continuo

Consideriamo lo schema generale



Per quanto riguarda il convertitore A/D, abbiamo

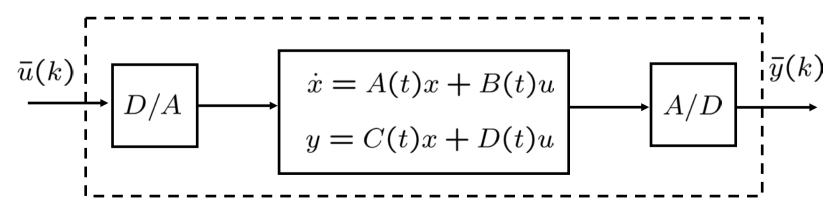
$$\bar{y}(k) = y(t_k)$$

Per quanto riguarda il convertitore D/A, si ottiene

$$u(t) = \bar{u}(k), \quad t_k \le t < t_{k+1}$$

che prende il nome di tenuta di ordine 0.

- Ipotizziamo di trascurare l'effetto di digitalizzazione, ovvero della rappresentazione di numeri reali su parole di lunghezza limitata
- L'analisi di questo sistema ibrido si semplifica parecchio andando a considerare il sistema a tempo discreto in figura:



Ora:
$$x(t) = \Phi(t, t_k)x(t_k) + \int_{t_k}^t \Phi(t, \tau)B(\tau)u(\tau)d\tau$$

$$x(t_{k+1}) = \Phi(t_{k+1}, t_k)x(t_k) + \left[\int_{t_k}^{t_{k+1}} \Phi(t_{k+1}, \tau)B(\tau)d\tau \right] u(t_k)$$

e quindi
$$\bar{x}(k+1) = \bar{A}(k)\bar{x}(k) + \bar{B}(k)\bar{u}(k)$$

$$\bar{A}(k) := \Phi(t_{k+1}, t_k)$$

$$\bar{B}(k) := \int_{t_k}^{t_{k+1}} \Phi(t_{k+1}, \tau)B(\tau)d\tau$$

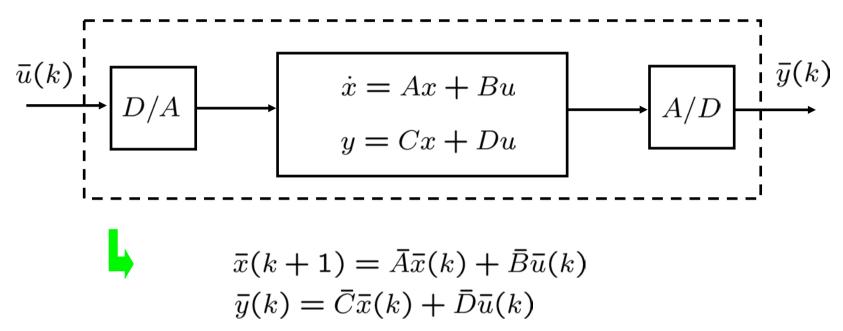
Se ora assumiamo che l'uscita del sistema sia campionata ad istanti $t_k' \neq t_k$ con $t_k \leq t_k' < t_{k+1}$

$$y(t_k') = C(t_k') \Phi(t_k', t_k) x(t_k) + \left[C(t_k') \int_{t_k}^{t_k'} \Phi(t_k', \tau) B(\tau) d\tau \right] u(t_k) + D(t_k') u(t_k)$$
 e se $\bar{y}(k) := y(t_k')$ abbiamo
$$\bar{y}(k) = \bar{C}(k) \bar{x}(k) + \bar{D}(k) \bar{u}(k)$$

$$\bar{C}(k) := C(t_k') \Phi(t_k', t_k)$$

$$\bar{D}(k) := C(t_k') \int_{t_k}^{t_k'} \Phi(t_k', \tau) B(\tau) d\tau + D(t_k')$$

Ora consideriamo il caso tempo-invariante.



e se si pone $t_{k+1} - t_k = T_s$, $t'_k - t_k = \alpha$

$$\bar{A} = e^{AT_s}, \ \bar{B} = \left(\int_0^{T_s} e^{A\tau} d\tau\right) B, \ \bar{C} = Ce^{A\alpha}, \ \bar{D} = C\left(\int_0^{\alpha} e^{A\tau} d\tau\right) B + D$$

Osserviamo infine che se $t'_k = t_k$ ne consegue $\bar{C} = C, \bar{D} = D$