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Systems Dynamics



Systems

Inputs (”causes”)

u(t) =


u1(t)
...

um(t)

 ∈ ℜm

Outputs (”effects”)

y(t) =


y1(t)
...

ym(t)

 ∈ ℜp

Definition of the
”system” entity to

be analysed
=⇒

Physical laws, a
priori knowledge,

heuristic
considerations,

statistical
evidence, etc.

=⇒

Mathematical
models: algebraic

and/or
differential

and/or difference
equations
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Dynamic Systems Described by
State Equations



Dynamic Systems

Recalling from the Fundamentals in Control course

What is the meaning of ”Dynamic”?

Can y(t) be determined in a unique way?

If the answer is
”NO”

=⇒ The system is a
dynamic system
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Dynamic Systems: Examples

y(t) = R · u(t)

The system is NOT
dynamic

u(t), t ∈ [t0, t1]

y(t0)

}

=⇒ y(t), t ∈ [t0, t1]

The system is dynamic
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Dynamic Systems: Examples

u(t), t ∈ [t0, t1]

y(t0)

ẏ(t0)

 =⇒ y(t), t ∈ [t0, t1]

The system is dynamic
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State variables: a qualitative definition

State variables
Variables to be known at time t = t0 in order to be able to
determine the output y(t), t ≥ t0 from the knowledge of the input
u(t), t ≥ t0:

xi(t), i = 1, 2, . . . , n (state variables)

· · · In more rigorous terms =⇒
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Dynamic Systems: Formal Definitions

A dynamic system is an abstract entity defined in axiomatic way:

S = {T,U,Ω, X, Y,Γ, φ, η}

• T : set of time instants provided with an order relation
• U : set of admissible input values
• Ω : set of admissible control functions
• X : set of admissible state values
• Y : set of admissible output values
• Γ : set of admissible output functions
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Dynamic Systems: Formal Definitions (cont.)

State transition function:

φ : T × T ×X × Ω 7→ X =⇒ x(t) = φ(t, t0, x0, u(·))

1. Consistency: φ(t0, t0, x0, u(·)) = x0 , ∀ (t0, x0, u(·)) ∈ T ×X × Ω

2. Irreversibility: φ is defined ∀ t ≥ t0, t ∈ T

3. Composition:

φ(t2, t0, x0, u(·)) = φ(t2, t1, φ(t1, t0, x0, u(·)), u(·))
∀ (t0, u(·)) ∈ T × Ω , ∀ t0, t1, t2 ∈ T : t0 < t1 < t2

4. Causality:

u′[t0,t)(·) = u′′[t0,t)(·) =⇒ φ(t, t0, x0, u
′(·)) = φ(t, t0, x0, u

′′(·)),
∀(t, t0, x0) ∈ T × T ×X
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Dynamic Systems: Formal Definitions (cont.)

Output function:

- Case 1: strictly proper system:

η : T ×X 7→ Y =⇒ y(t) = η(t, x(t)), ∀t ∈ T

- Case 2: non strictly proper system:

η : T ×X × U 7→ Y =⇒ y(t) = η(t, x(t), u(t)), ∀t ∈ T
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Dynamic Systems: Formal Definitions (cont.)

(x, t) ∈ X × T is defined as event

Given:
• (x0, t0) initial event
• u(·) input function

One has:

φ(·, t0, x0, u(·)) state movement

φ(t, t0, x0, u(·)), t ≥ t0 state trajectory

η(·, φ(·, t0, x0, u(·))) output movement

η(·, φ(·, t0, x0, u(·))) output trajectory
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Dynamic Systems: Formal Definitions (cont.)

x̄ ∈ X is an equilibrium state if ∀ t0 ∈ T, ∃u(·) ∈ Ω such that

φ(t, t0, x̄, u(·)) = x̄ , ∀ t ≥ t0, t ∈ T

ȳ ∈ Y is an equilibrium output if ∀ t0 ∈ T, ∃x̄ ∈ X, ∃u(·) ∈ Ω such
that

η(t, φ(t, t0, x̄, u(·))) = ȳ , ∀ t ≥ t0, t ∈ T

Notice that, in general:

• the specific input function u(·) ∈ Ω depends on the choice of
the initial time-instant t0 ∈ T

• the fact that the state of a dynamic system is at equilibrium
does not imply that the output is at equilibrium as well, unless
η(t, x(t)) does not depend explicitly on time (in which case, the
output function takes on the form η(x(t)) )
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Dynamic Systems: Formal Definitions (cont.)

• A dynamic system is invariant if T is an additive algebraic
group and ∀u(·) ∈ Ω , ∀ τ ∈ T , letting uτ (t) := u(t− τ) ∈ Ω , it
follows that{

φ(t, t0, x0, u(·)) = φ(t+ τ, t0 + τ, x0, u
τ (·)) , ∀ t, τ ∈ T

y(t) = η(t, x(t))

• A dynamic system is discrete-time if T is isomorphous with Z

• A dynamic system is continuous-time if T is isomorphous with
R

• A dynamic system is finite-dimensional (lumped-parameter) if
U,X, Y are finite-dimensional vector spaces

• A dynamic system is infinite-dimensional
(distributed-parameter) if U,X, Y are infinite-dimensional
vector spaces
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Interconnection of Dynamic Systems

We consider interconnected systems

S = {T,U,Ω, X, Y,Γ, φ, η}

composed of N subsystems

Si = {Ti, Ui,Ωi, Xi, Yi,Γi, φi, ηi} , i = 1, 2, . . . N

interacting with each other through their external variables such as
inputs ui(·) ∈ Ωi and outputs yi(·) ∈ Γi

Assumption. The interconnected system S satisfies the formal
definition of dynamic system
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Interconnection of Dynamic Systems

Cascade interconnection

S = {T = T1 = T2, U = U1,Ω = Ω1, X = X1 ×X2, Y = Y2,Γ = Γ2}
(x1(t), x2(t)) = (φ1(t, t0, x1(t0), u(·)),

φ2(t, t0, x2(t0), η1(t, φ1(t, t0, x1(t0), u(·)))))
y(t) = y2(t) = η2(t, x2(t))
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Interconnection of Dynamic Systems

Parallel interconnection

S = {T = T1 = T2, U = U1 = U2,Ω = Ω1 = Ω2, X = X1 ×X2, Y = Y1 × Y2,

Γ = Γ1 × Γ2}
(x1(t), x2(t)) = (φ1(t, t0, x1(t0), u(·)), φ2(t, t0, x1(t0), u(·)))

φ2(t, t0, x2(t0), η1(t, φ1(t, t0, x1(t0), u(·)))))
(y1(t), y2(t)) = (η1(t, x1(t)), η2(t, x2(t)))
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Interconnection of Dynamic Systems

Feedback interconnection

General scheme:

u1(t) = ψ1(y2(t), ν1(t), t)

u2(t) = ψ2(y1(t), ν2(t), t)
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Interconnection of Dynamic Systems

Feedback interconnection

Commonly used scheme:

S = {T = T1 = T2, U = V1,Ω = Ων1 , X = X1 ×X2, Y = Y1,Γ = Γ1}{
(x1(t), x2(t)) = (φ1(t, t0, x1(t0), ψ1(ν1(·), y2(·)), φ2(t, t0, x2(t0), y1(·))))
y(t) = y1(t) = η1(t, x1(t))
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Feedback Interconnection: a Notable Example

A notable example of feedback interconnection is the state control
law + state observer scheme (will be dealt with in the Control
Theory course)
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Finite-dimensional Regular Systems

A dynamic systems is regular if:

• U,Ω, X, Y,Γ are normed vector spaces
• φ(·, ·, ·, ·) is a continuous function with respect its arguments

• d

dt
φ(t, t0, x0, u(·)) does exist and it is continuous for all values

of the arguments where u(·) is continuous

The state movement φ(t, t0, x0, u(·)) of a regular finite-dimensional
dynamic system is the unique solution of a suitable vector
differential equation {

ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

and
y(t) = g(x(t), u(t), t)

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p18



Finite-dimensional Discrete-time Dynamic Systems

Discrete-time dynamic systems obtain by sampling a
continuous-time regular system

• U,X, Y finite-dimensional normed vector spaces
• Ω = {u(·) : piecewise constantui(·) , i = 1, . . . ,m}
• Sampling time ∆T :

u(k) = u(t) , t0 + k∆T ≤ t < t0 + (k + 1)∆T, k = 0, 1, . . .
y(k) = y(t0 + k∆T ), k = 0, 1, . . .

Then: {
x(k + 1) = fd(x(k), u(k), k)

y(k) = gd(x(k), u(k), k)

where (from composition property of φ ):

fd(x(k), u(k), k) = φ(t0 + (k + 1)∆T, t0 + k∆T, x(k), u(k))

gd(x(k), u(k), k) = η(x(k), u(k), t0 + k∆T )
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An example: continuous-time model of a car suspension

From a real vehicle …

to a simplified quarter-car model

quarter-car model hypotheses

• vehicle as assembly of four
decoupled parts

• each part consists of
• the sprung mass: a quarter
of the vehicle mass,
supported by a suspension
actuator, placed between
the vehicle and the tyre

• the unsprung mass: the
wheel/tyre sub-assembly

• the model allows only for
vertical motion: the vehicle
is moving forward with an
almost constant speed
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Continuous-time model of a car suspension (cont.)

• inputs:
• ground vertical position vs.
the steady-state

• active actuator force
• outputs:

• sprung mass vertical
acceleration

• contact force between tyre
and ground

• state variables:
• vertical positions of sprung
and unsprung masses vs.
the corresponding
steady-state values

• vertical speeds of masses



x1(t) = zs(t)− z̄s
x2(t) = zu(t)− z̄u
x3(t) = ẋ1(t)

x4(t) = ẋ2(t)

u1(t) = zr(t)− z̄r
u2(t) = F (t)

y1(t) = ẍ1
y2(t) = ku (x2(t)− u1(t))
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Continuous-time model of a car suspension (cont.)




ẋ1

ẋ2

ẋ3

ẋ4

 =



0 0 1 0
0 0 0 1
ks
ms

ks
ms

− cs
ms

cs
ms

ks
mu

−ks + ku
mu

cs
mu

− cs
mu


·


x1

x2

x3

x4

+


0 0
0 0
0 1

ms
ks
mu

− 1
mu

 ·

[
u1

u2

]

[
y1

y2

]
=

− ks
ms

ks
ms

− cs
ms

cs
ms

0 ku 0 0

 ·


x1

x2

x3

x4

+


0 1

ms

−ku 0

 ·

[
u1

u2

]

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p22



Continuous-time car suspension: an example

Assuming

ms = 400.0 kg mu = 50.0 kg cs = 2.0 103 N sm−1

ks = 2.0 104 Nm−1 ku = 2.5 105 Nm−1

the car suspension model becomes


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1.0

−50.0 50.0 −5.0 5.0
400.0 −5400.0 40.0 −40.0

 ·


x1

x2

x3

x4

+


0 0
0 0
0 2.5 10−3

5.0 103 −2.0 10−2

 ·

[
u1

u2

]

[
y1

y2

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 105 0 0

]
·


x1

x2

x3

x4

+

[
0 2.5 10−3

−2.5 105 0

]
·

[
u1

u2

]
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Sampled-time car suspension models

Let’s get a sampled-time description of the same dynamic system:

• How does the sampled-time description correlate with the
continuous-time model?

• What happens if we increase or decrease the sampling rate?
Does the sampled-time model change with the sampling time?

• Does the sampled-time model describe the behaviour of the
continuous-time dynamic system for any possible choice of the
sampling time value?
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Using 1000 samples per second as sampling rate




x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


9.98 10−1 2.05 · 10−5 9.98 · 10−4 2.47 · 10−6

1.97 · 10−4 0.99 1.98 · 10−5 9.80 · 10−4

−4.89 · 10−2 3.65 · 10−3 9.95 · 10−1 4.91 · 10−3

3.91 · 10−1 −5.29 3.93 · 10−2 0.96

 ·


x1(k)

x2(k)

x3(k)

x4(k)



+


4.13 · 10−6 1.23 · 10−9

2.47 · 10−3 −9.85 · 10−9

1.24 · 10−2 2.44 · 10−6

4.90 −1.95 · 10−5

 ·

[
u1(k)

u2(k)

]

[
y1(k)

y2(k)

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 · 105 0 0

]
·


x1(k)

x2(k)

x3(k)

x4(k


+

[
0 2.5 · 10−3

−2.5 · 105 0

]
·

[
u1(k)

u2(k)

]
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Instead, using 1 sample per second as sampling rate




x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

 =


1.17 · 10−1 −1.76 · 10−2 4.65 · 10−3 1.34 · 10−4

7.75 · 10−3 −4.87 · 10−3 1.07 · 10−3 1.29 · 10−5

−1.79 · 10−1 −4.90 · 10−1 9.94 · 10−2 3.64 · 10−4

−4.84 · 10−2 −1.62 · 10−2 2.91 · 10−3 −2.95 · 10−5

 ·


x1(k)

x2(k)

x3(k)

x4(k)



+


9.00 · 10−1 4.41 · 10−5

9.97 · 10−1 −3.88 · 10−7

6.70 · 10−1 8.96 · 10−6

6.46 · 10−2 2.42 · 10−6

 ·

[
u1(k)

u2(k)

]

[
y1(k)

y2(k)

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 · 105 0 0

]
·


x1(k)

x2(k)

x3(k)

x4(k


+

[
0 2.5 · 10−3

−2.5 · 105 0

]
·

[
u1(k)

u2(k)

]
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Step responses comparison
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Step responses comparison (cont.)
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Step responses comparison (cont.)
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Step responses comparison (cont.)
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Sampled-time car suspension description (cont.)

Remarks

• by selecting different sampling rate we obtained different
representations of the same continuous-time dynamic system

• sampling may heavily distort the information, giving a
completely wrong discrete-time representation of the original
continuous-time system: indeed the model obtained using one
sample per second as the sampling rate is wrong!
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Continuous-time State Equations

State equations
(dynamic)

Output
equations
(algebraic)


ẋ1(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
...

ẋn(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)


y1(t) = g1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
...

yp(t) = gp(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
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Continuous-time State Equations (cont.)

u(t) =


u1(t)
...

um(t)

 ∈ Rm , y(t) =


y1(t)
...

yp(t)

 ∈ Rp

x(t) =


x1(t)
...

xn(t)

 ∈ Rn

f(x, u, t) =


f1(x, u, t)

...
fn(x, u, t)

 ∈ Rn

f(x, u, t) =


f1(x, u, t)

...
fn(x, u, t)

 ∈ Rn

Compact form

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
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Discrete-time State Equations

State equations
(dynamic)

Output equations
(algebraic)


x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
...

xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)


y1(k) = g1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
...

yp(k) = gp(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
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Discrete-time State Equations (cont.)

u(k) =


u1(k)
...

um(k)

 ∈ Rm , y(k) =


y1(k)
...

yp(k)

 ∈ Rp

x(k) =


x1(k)
...

xn(k)

 ∈ Rn

f(x, u, k) =


f1(x, u, k)

...
fn(x, u, k)

 ∈ Rn

f(x, u, k) =


f1(x, u, k)

...
fn(x, u, k)

 ∈ Rn

Compact form

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
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More Definitions and Properties

• Time-invariant Dynamic Systems{
ẋ(t) = f(x(t), u(t), t )

y(t) = g(x(t), u(t), t )
=⇒

{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t)){
x(k + 1) = f(x(k), u(k), k )

y(k) = g(x(k), u(k), k )
=⇒

{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

• Strictly Proper Dynamic Systems{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), t){
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), k)
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More Definitions and Properties (cont.)

• Forced and Free Dynamic Systems ẋ(t) = f(x(t), u(t) , t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), t)

y(t) = g(x(t), t) x(k + 1) = f(x(k), u(k) , k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), k)

y(k) = g(x(k), k)

It is worth noting that in case the input function u(t), ∀ t or
input sequence u(k), ∀ k are known beforehand, the dynamic
system can be re-written as a free one:{

ẋ(t) = f(x(t), u(t), t) = f̃(x(t), t)

y(t) = g(x(t), u(t), t) = g̃(x(t), t){
x(k + 1) = f(x(k), u(k), k) = f̃(x(k), k)

y(k) = g(x(k), u(k), k) = g̃(x(k), k)
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More Definitions and Properties (cont.)

• Free Movement

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

with:
x(t0) = x0 ; u(t) = 0 , ∀ t

=⇒ { (xl(t), t), t ∈ [t0, t1] }
free movement

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

with:
x(k0) = x0 ; u(k) = 0 , ∀ k

=⇒ { (xl(k), k), k ∈ [k0, k1] }
free movement
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More Definitions and Properties (cont.)

• Forced Movement

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

with:
x(t0) = 0

=⇒ { (xf (t), t), t ∈ [t0, t1] }
forced movement

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

with:
x(k0) = 0

=⇒ { (xf (k), k), k ∈ [k0, k1] }
forced movement
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Discrete-time Systems

Consider:

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
, k > k0, x(k0) = x0

Clearly, by iterating the state equations:

x(k0) = x0
x(k0 + 1) = f(x(k0), u(k0), k0)

x(k0 + 2) = f(x(k0 + 1), u(k0 + 1), k0 + 1)
= f(f(x(k0), u(k0), k0), u(k0 + 1), k0 + 1)

x(k0 + 3) = f(x(k0 + 2), u(k0 + 2), k0 + 2)
= f(f(f(x(k0), u(k0), k0), u(k0 + 1), k0 + 1), u(k0 + 2), k0 + 2)

and so on. Hence, the state transition function has the form

x(k) = φ(k, k0, x0, {u(k0), . . . , u(k − 1)})

thus enhancing the causality property.
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Time-invariant Discrete-time Systems

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
, x(k0) = x0, ua(k) = u(k), k ∈ {k0, . . . , k1}

yields the state sequence xa(k), k ∈ {k0, . . . , k1} . Let’s shift the
initial time by k̄ and the input sequence as well:

x(k0 + k̄) = x0
ub(k) = ua(k − k̄),

k ∈ {k0 + k̄, . . . , k1 + k̄}
=⇒ xb(k) = xa(k − k̄),

k ∈ {k0 + k̄, . . . , k1 + k̄}

Conventionally, we set k0 = 0 .

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p41



Equilibrium Analysis: Equilibrium States and Outputs

• A state x̄ ∈ Rn is an equilibrium state if ∀ k0 ,
∃ {ū(k) ∈ Rm, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

• An output ȳ ∈ Rp is an equilibrium output if ∀ k0 ,
∃ {ū(k) ∈ Rm, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ y(k) = ȳ, ∀ k > k0

In general:

• The input sequence {ū(k) ∈ Rm, k ≥ k0} depends on the initial
time k0

• The fact that the state is of equilibrium does not imply that the
corresponding output coincides with an equilibrium output
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Equilibrium Analysis in the Time-invariant Case

In the time-invariant case, all equilibrium states can be determined
by imposing constant input sequences.
A state x̄ ∈ Rn is an equilibrium state if ∃ ū ∈ Rm such that

x(k0) = x̄

u(k) = ū, ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

All equilibrium states x̄ ∈ Rn can thus be obtained by finding all
solutions of the algebraic equation

x̄ = f(x̄, ū) , ∀ ū ∈ Rm

The following sets are also introduced:

X̄ū = {x̄ ∈ Rn : x̄ = f(x̄, ū)}
X̄ = {x̄ ∈ Rn : ∃ ū ∈ Rm such that x̄ = f(x̄, ū)}
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State Space Descriptions

But ... How to determine a state space description?

Recall:

State variables
Variables to be known at time t = t0 in order to be able to
determine the output y(t), t ≥ t0 from the knowledge of the input
u(t), t ≥ t0:

xi(t), i = 1, 2, . . . , n (state variables)
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State Space Descriptions(cont.)

A ”physical” criterion
State variables can be defined as entities associated with storage
of mass, energy, etc. . . .

For example:

• Passive electrical systems: voltages on capacitors, currents on
inductors

• Translational mechanical systems: linear displacements and
velocities of each independent mass

• Rotational mechanical systems: angular displacements and
velocities of each independent inertial rotating mass

• Hydraulic systems: pressure or level of fluids in tanks
• Thermal systems: temperatures
• . . .
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State Space Descriptions: Example 1 (continuous-time)

A mechanical system

mq̈+ βq̇+ kq = f

x1 := q

x2 := q̇
=⇒ x =

[
x1
x2

]
;

 ẋ1 = x2

ẋ2 = q̈ = − k

m
x1 −

β

m
x2 +

1
m
f
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State Space Descriptions: Example 2 (continuous-time)

Electrical systems

L
diL
dt

= v −RiL − vC

C
dvC
dt

= iL

C
dvC
dt

= i− 1
R
vC − iL

L
diL
dt

= vC

x1 := iL ; x2 := vC
ẋ1 = −R

L
x1 −

1
L
x2 +

1
L
v

ẋ2 =
1
C
x1


ẋ1 =

1
L
x2

ẋ2 = − 1
C
x1 −

1
RC

x2 +
1
C
iv
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State Space Descriptions: Example 3 (discrete-time)
Student dynamics: 3-years undergraduate course

• percentages of students promoted, repeaters, and dropouts are
roughly constant

• direct enrolment in 2nd and 3rd academic year is not allowed
• students cannot enrol for more than 3 years


x1(k + 1) = β1x1(k) + u(k)

x2(k + 1) = α1x1(k) + β2x2(k)

x3(k + 1) = α2x2(k) + β3x3(k)

y(k) = α3x3(k)

• xi(k): number of students enrolled
in year i at year k, i = 1, 2, 3

• u(k): number of freshmen at year k
• y(k): number of graduates at year k
• αi: promotion rate during year i,
αi ∈ [0, 1]

• βi: failure rate during year i,
βi ∈ [0, 1]

• γi: dropout rate during year i,
γi = 1− αi − βi ≥ 0
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State Space Descriptions: Example 4 (discrete-time)

Supply chain

• S purchases the quantity u(k) of raw material at each month k
• A fraction δ1 of raw material is discarded, a fraction α1 is
shipped to producer P

• A fraction α2 of product is sold by P to retailer R, a fraction δ2
is discarded

• Retailer R returns a fraction β3 of defective products every
month, and sells a fraction γ3 to customers
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State Space Descriptions: Example 4 (discrete-time) (cont.)



x1(k + 1) = (1− α1 − δ1)x1(k) + u(k)

x2(k + 1) = α1x1(k) + (1− α2 − δ2)x2(k)

+β3x3(k)

x3(k + 1) = α2x2(k) + (1− β3 − γ3)x3(k)

y(k) = γ3x3(k)

• k: month counter
• x1(k): raw material in
S

• x2(k): products in P
• x3(k): products in R
• y(k): products sold to
customers
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State Space Descriptions (cont.)

A ”mathematical” criterion

• Continuous-time case. An input-out differential equation
model of the system is available:

dny

dtn
= φ

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)
• Discrete-time case. An input-out difference equation model of
the system is available:

y(k + n) = φ (y(k + n− 1), y(k + n− 2), . . . , y(k), u(k), k)

Suitable state variables – without necessarily a physical meaning
– are defined to represent ”mathematically” the differential
equation or the difference equation models of the dynamic system
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State Space Descriptions (cont.)

Continuous-time case:

dny

dtn
= φ

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)
Letting: 

x1(t) := y(t)

x2(t) :=
dy

dt...
xn(t) :=

dny

dtn

=⇒ x :=


x1
x2
. . .

xn


one gets: 

ẋ1 = x2
ẋ2 = x3
...
ẋn = φ(x, u, t)

y = x1
DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p52



State Space Descriptions (cont.)

Discrete-time case:

y(k + n) = φ (y(k + n− 1), y(k + n− 2), . . . , y(k), u(k), k)
Letting: 

x1(k) := y(k)

x2(k) := y(k + 1)
...
xn(k) := y(k + n− 1)

=⇒ x :=


x1
x2
. . .

xn


one gets: 

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)
...
xn(k) = φ(x, u, k)

y(k) = x1(k)
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State Space Descriptions (cont.)

Example (discrete-time):

w(k)− 3w(k − 1) + 2w(k − 2)− w(k − 3) = 6u(k)

Letting: 
x1(k) := w(k − 3)
x2(k) := w(k − 2)
x3(k) := w(k − 1)

=⇒ x :=

 x1
x2
x3


one gets: 

x1(k + 1) = x2(k)

x2(k + 1) = x3(k)

x3(k + 1) = 3x3(k)− 2x2(k) + x1(k) + 6u(k)
y(k) = x3(k)
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State Space Descriptions (cont.)

The state space description is not unique

• The fact that physical and non-physical approaches can be
followed to describe the same dynamic system in state-space
form clearly reveals the non-uniqueness of this representation

• Later on some more details will be given concerning equivalent
state space descriptions
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From Continuous-Time to Discrete-Time

Remarks

• Till now we carried out a general treatment of dynamic systems
considering both the continuous-time and the discrete-time
cases

• Since the course is intended to cover data-based system
dynamics, analysis and estimation, from now on only the
discrete-time case will be dealt with

• However, before doing this, the issue of conversion of a
continuous-time into a discrete-time by sampling has to be
dealt with in some detail
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From Continuous-Time to Discrete-Time: signal taxonomy

Continuous-time vs. discrete-time signals

• continuous-time signal: a function of time (independent
variable) x = x(t), such that the independent variable time is
continuous

• the domain of the function x = x(t) has the cardinality of the real
numbers set R.

• discrete-time signal: a signal y = y(k), specified only for
discrete values of time (the independent variable)

• the domain of the function y = y(k) has the cardinality of the
integer numbers set Z.

• a discrete-time signal is usually called sequence
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Signal taxonomy (cont.)

Analog vs. digital signals

• analog signal: the amplitude of the signal may vary in a
continuous range

• an analog signal can be both continuous-time and discrete-time
signal.

• digital signal: a signal whose amplitude is quantized, i.e. the
amplitude of a digital signal can take only a finite number of
values.

• a digital signal can be both continuous-time and discrete-time
signal.
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Signal taxonomy: graphical summary
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Sampling & digital coding: main issues

The conversion of an analog, continuous-time signal e = e(t) to a
digital, discrete-time sequence is subject to two main issues:

• loss of information, due to the conversion from
continuous-time to discrete-time (more details later)

• quantisation noise and distortion, due to the analog to digital
conversion process

Sampling issues taken into account

• sampling and the loss of information, a glimpse on the
theoretical motivations of, and how to cope with this issue are
discussed topics

• quantisation and coding issues are not taken into account
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Sampling & digital coding: main issues (cont.)

From now on, consider the sampling procedure simply as a
conversion from an analog, continuous-time signal to an analog,
discrete-time signal.

Moreover, hereafter each time-based signal will be labelled just as
continuous-time or discrete-time signal.
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The ideal sampler

How to convert a continuous-time signal to a discrete-time one?

Periodic sampling using an ideal sampler

• the aim of the A/D converter is to transform a continuous-time
signal x(t) into a discrete-time sequence x(k)

• given a time interval ∆, called sampling period, applying a
periodic sampling means to extract and collect, creating a
sequence, values of the signal corresponding to time instants,
integer multiples of the sampling period

{x(k)}k∈N =⇒ {x(t) : t = k∆ , k ∈ N}
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The ideal sampler (cont.)

An ideal sampler acts as an ideal electrical switch

• the switch commutes between the two states “open” and
“closed”, driven by a periodic pulse signal (called the clock
signal), with the time period equal to the sampling period ∆;

• when a clock pulse occurs, the switch closes instantaneously,
the actual sample of the input signal can be “copied” into the
sampler output and then the switch commutes
(instantaneously) to the “open” state, waiting for the next clock
pulse.
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The ideal sampler (cont.)

Sampling rate
Given the sampling period ∆, let’s define the rate of conversion
from continuous to discrete time using

• sampling angular frequency

Ωs =
2π
∆

[rad/s]

• sampling frequency
fs =

1
∆

[Hz]
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The reconstructor

Consider now the backward operation: how to characterize the
conversion of a discrete-time signal to a continuous-time one?

Reconstruction using a data-holder

• the purpose of the D/A subsystem is to reconstruct the
sampled signal into a form that resembles the original signal,
before sampling.

• the simplest D/A subsystem [indeed the most common one] is
the so-called zero-order-hold (ZOH).

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p65



The reconstructor (cont.)
Reconstruction using a D/A converter (cont.)

• the ZOH clamps the output signal to a value corresponding to
that of the input sequence at the current clock pulse, until the
next clock pulse arrives.

x(t) = x(k) , k∆H ≤ t < (k + 1) ∆H k ∈ N

• the time period ∆H is called holding period.

Note that the output signal of a ZOH is a stair-wise signal
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The reconstructor (cont.)

Holding rate
Given the holding period ∆H, let’s define the rate of conversion for a
D/A device using

• holding angular frequency

ΩH =
2π
∆H

[rad/s]

• holding frequency
fH =

1
∆H

[Hz]

Usually the sampling and holding frequencies have the same value.
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Sampling and reconstructing

• What happens if a continuous-time signal is firstly sampled
and then reconstructed? How is the output signal of the ZOH
w.r.t the original continuous-time signal? The same or?

• Indeed, the output of the ZOH is a stair-wise signal, so the
reconstructed signal is different from the original one:
sampling and reconstruction are just approximately the
opposite function of each other.
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Sampling and loss of information

xk , k ∈ N
+

a priori knowledge
of the signal features


x(t) = ?

• In general, reconstructing the continuous-time signal starting
from the samples is an ill-posed problem: the reconstruction
may be ambiguous.
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Sampling a sinusoidal signal

Consider the signal x(t) = sin
(
Ω̄t

)
P =

2π
Ω̄

Select as sampling
period the value

∆ =
3
4 P =

3π
2Ω̄

Indeed, it’s easy to
determine sinusoidal
signals, with period
P̂ > P , that may
generate the same
values, obtained by
sampling x(t).

Note: the frequency of the ambiguous signal is lower than the
frequency of the original signal. This effect is called frequency
aliasing (or frequency fold-over).
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Sampling a sinusoidal signal (cont.)

Reducing the
sampling period
(i.e. increasing the
sampling frequency)
the ambiguity
disappears: no
more frequency
fold-over effect.

∆ =
P

4 =
π

2 Ω̄

By choosing properly the sampling period, the frequency aliasing
effect has been avoided. Note: the effective sampling frequency is
much higher than the signal time frequency.
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Ideal sampler & ZOH: mathematical model

• So far, it has been illustrated by examples that, when sampling
a simple sinusoidal signal, choosing properly the sampling
period grants to avoid the aliasing effect.

• How to generalize? What is the effect of the sampling
procedure? How does the choice of the sampling period
influence the frequency aliasing effect?

The influence of the sampling period on the aliasing effect will be
explained by modelling the direct connection of an ideal sampler to
a ZOH (∆ is the sampling period)

ZOH
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Ideal sampler & ZOH: mathematical model (cont.)

ZOH

The output of the ZOH is a continuous-time signal, expressed as

h(k∆+ τ) =x(k∆) , 0 ≤ τ < ∆ , k ∈ N a stair-wise signal

h(t) =x(0) [1(t)− 1(t−∆)] + x(∆) [1(t−∆)− 1(t− 2∆)] + · · ·

=

+∞∑
k=0

x(k∆) [1(t− k∆)− 1 (t− (k + 1)∆)]
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Ideal sampler & ZOH: mathematical model (cont.)

Applying the Laplace transform

L{1(t− k∆)} =
e−k∆s

s

L{h(t)} = H(s) =
+∞∑
k=0

x(k∆)
e−k∆s − e−(k+1)∆s

s

= 1− e−∆s

s
·

+∞∑
k=0

x(k∆)e−k∆s

function only of ∆
function of input signal
x(t) and sampling period ∆
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Ideal sampler & ZOH: mathematical model (cont.)

a transfer function model
for the ZOH

the Laplace transform of
ideal sampler’s output as
continuous-time signal

H(s) = 1− e−∆s

s
·
+∞∑
k=0

x(k∆)e−k∆s = GZOH(s)X
∗(s)

where

GZOH(s) =
1− e−∆s

s
X∗(s)

△
=

+∞∑
k=0

x(k∆)e−k∆s
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Ideal sampler & ZOH: mathematical model (cont.)

So far, we demonstrated the equivalence between the following two
structures

ZOH

where x∗(t) = L−1 {X∗(s)} X∗(s)
△
=

+∞∑
k=0

x(k∆)e−k∆s
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Ideal sampler as impulse modulator

Note: x∗(t) is a continuous-time signal representation of the ideal
sampler output (indeed a sequence of samples)

x∗(t) = L−1 {X∗(s)} = L−1
{

+∞∑
k=0

x(k∆)e−k∆s

}

Now, recalling the main properties of the Dirac delta function

L−1 {e−k∆s
}
= δ (t− k∆) δ(t) =

{
0 ∀t ̸= 0

+∞ t = 0∫ +∞

−∞
δ(t) dt = 1

∫ +∞

−∞
f(t) δ(t− τ) dt = f(τ)

the signal x∗(t) can be expressed as

x∗(t) = L−1
{

+∞∑
k=0

x(k∆)e−k∆s

}
=

+∞∑
k=0

x(k∆) δ(t− k∆)
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Ideal sampler as impulse modulator (cont.)

x∗(t) =

+∞∑
k=0

x(k∆) δ(t− k∆)

=

+∞∑
k=0

x(t) δ(t− k∆)

=x(t) ·
+∞∑
k=0

δ(t− k∆)

=x(t) · δ∆(t)

where

δ∆(t) =

+∞∑
k=0

δ(t− k∆)

• the signal x∗(t) can be
expressed as the result of the
modulation of the original
signal x(t) with a train of
Dirac impulses

• owing to this result, the ideal
sampler is also referred as an
impulse modulator
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Laplace- & Z-transform of ideal sampler output signal

• Since the output of the impulse modulator may be described
as a continuous-time signal x∗(t) but also as a discrete-time
sequence x(k∆), how to correlate such representations?

• Consider the Laplace-transform of x∗(t) and the Z-transform of
the sequence x(k∆)

L{x∗(t)} = X∗(s) =

+∞∑
k=0

x(k∆)e−k∆s

Z {x(k∆)} = X(z) =

+∞∑
k=0

x(k∆) z−k

It’s easy to find that using the substitutions

z = es∆ ⇐⇒ s =
1
∆

log z

the Laplace transform may be rewritten as Z-transform and
vice-versa.
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Properties ofX∗(s): X∗(s) vsX(s)

Definition: starred transform
The function X∗(s) = L{x∗(t)} is usually called the starred
transform.

Property 1: the starred transformX∗(s) vs. X(s)

The starred transform may be expressed as a scaled summation of
infinite copies of the Laplace transform of the original analog
signal X(s) = L{x(t)}, shifted each other by jΩs (where Ωs =

2π
∆

and ∆ is the sampling period)

X∗(s) =
1
∆

k=+∞∑
k=−∞

X (s− jkΩs) , Ωs =
2π
∆
, X(s) = L{x(t)}
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1st property of starred transform - sketch of proof

Proof - a sketch
Recall the ideal sampler output expression

x∗(t) =

+∞∑
k=0

x(k∆) δ(t− k∆)

Remember: the original, analog signal x(t) is a causal signal. Owing
this property, the summation may be modified

x(t) ≡ 0 ∀t < 0 =⇒ x∗(t) =

+∞∑
k=−∞

x(k∆) δ(t− k∆)

According to this modification, let’s redefine also the impulse train

δ∆(t) =

+∞∑
k=−∞

δ(t− k∆)
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1st property of starred transform - sketch of proof (cont.)

Now represent the impulse train as Fourier series

δ∆(t) =
k=+∞∑
k=−∞

C∆(k)e
jkΩst Ωs =

2π
∆

C∆(k) =
1
∆

∫ +∆
2

−∆
2

δ∆(t) e
−jkΩst dt

=
1
∆

∫ +∆
2

−∆
2

δ(t) e−jkΩst dt =
1
∆

Thus

δ∆(t) =
1
∆

k=+∞∑
k=−∞

ejkΩst
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1st property of starred transform - sketch of proof (cont.)

By substitution of the impulse train expression into the ideal
sampler output x∗(t), we obtain

x∗(t) = x(t) · δ∆(t) =
1
∆

k=+∞∑
k=−∞

x(t)ejkΩst

Applying the Laplace transform

X∗(s) = L{x∗(t)} =
1
∆

k=+∞∑
k=−∞

∫ +∞

−∞

[
x(t)ejkΩs

]
e−st dt

Let’s apply the bilateral Laplace transform to x∗(t):
remember, we rewrote x∗(t) as it is non-causal signal
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1st property of starred transform - sketch of proof (cont.)

Thus

X∗(s) =
1
∆

k=+∞∑
k=−∞

∫ +∞

−∞

[
x(t)ejkΩs

]
e−st dt

Recall the Laplace transform property
L
{
ekt f(t)

}
= F (s− k) ∀k ∈ C , F (s) = L{f(t)}

Finally

X∗(s) =
1
∆

k=+∞∑
k=−∞

X (s− jkΩs) , k ∈ Z , Ωs =
2π
∆
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Properties ofX∗(s): periodicity of the starred transform

Property 2: the starred transform is periodic in s, with period jΩs

X∗(s) = X∗ (s+ jnΩs) , n ∈ N , Ωs =
2π
∆

Proof.

X∗ (s+ jnΩs) =
+∞∑
k=0

x(k∆)e−k∆(s+jnΩs)

Since Ωs ·∆ = 2π, applying the Euler’s relationship
ejθ = cos θ + j sin θ

e−jnk∆Ωs = e−jnk2π = 1 ∀n , k ∈ N

thus

X∗ (s+ jnΩs) =
+∞∑
k=0

x(k∆)e−k∆s = X∗ (s)
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Properties ofX∗(s): poles of the starred transform

Property 3: poles of the starred transform vs poles ofX(s)

If X(s) has a pole at s = ŝ,
then X∗(s) must have poles at s = ŝ+ jkΩs , k ∈ Z

Proof.
Rewrite the result of “Property 1”

X∗(s) =
1
∆

k=+∞∑
k=−∞

X (s− jkΩs)

=
1
∆

[
X(s) +X (s− jΩs) +X (s− 2jΩs) + · · ·

+X (s+ jΩs) +X (s+ 2jΩs) + · · ·
]

If X(s) has a pole at s = ŝ, then each term of the latter expression
will contribute with a pole at s = ŝ− jkΩs , k ∈ Z.
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Properties ofX∗(s): poles of the starred transform (cont.)

Poles map of the starred transform

• if X(s) has a pole in s = −σ1 + jΩ1, then
the sampling operation will generate poles
for X∗(s) in s = −σ1 + jΩ1 ± jkΩs , k ∈ Z

• on the contrary, if X(s) has a pole in
s = −σ1 + j(Ω1 +Ωs), then X∗(s) will have
a pole in s = −σ1 + jΩ1

• pole locations in X(s) at
s = −σ1 + j(Ω1 ± kΩs) , k ∈ Z will result
in identical pole locations in X∗(s)
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Properties ofX∗(s): poles of the starred transform (cont.)

Primary and complementaries strips in the s-plane

• consider the s-plane of the starred
transform and divide it into strips

• the primary strip is defined as the strip for
which{
s : s ∈ C , s = σ + jΩ , −Ωs

2 ≤ Ω ≤ +
Ωs
2

}
• if the pole-zero locations for the starred
transform are known in the primary strip,
then the pole-zero locations for X∗(s) in
the entire s-plane are known.
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Properties ofX∗(s): poles map of starred transform
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Properties ofX∗(s): poles of the starred transform (cont.)

What about zeros of starred transform?
Indeed, the zeros of X(s) do not uniquely determine the location
of zeros of the starred transform X∗(s). However, the zero
locations of X∗(s) are periodic, with period jΩs (Property 2).
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Laplace& Fourier transform of a causal, continuous-time signal

Consider a causal, continuous-time signal x(t). The unilateral
Laplace transform of such a signal is defined as

L{x(t)} = X(s) =

∫ +∞

0
x(τ)e−sτ dτ

whereas the Fourier transform is

F{x(t)} = X(Ω) =

∫ +∞

−∞
x(t)e−jΩτ dτ

Exploiting the signal causality, the Fourier transform may be
rewritten as

F{x(t)} = X(Ω) =

∫ +∞

0
x(t)e−jΩτ dτ = L{x(t)}|s=jΩ

provided that both transforms exist.
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Sampling and aliasing in the frequency domain

Starred transform result in the frequency domain
Analysing the starred signal x∗(t) by applying the Fourier
transform (instead of the Laplace one), provides the same result:

the Fourier transform of the starred signal may be expressed as a
scaled summation of infinite copies of the Fourier transform of
the original analog signal

X∗(Ω) =
1
∆

k=+∞∑
k=−∞

X (Ω− kΩs) , Ωs =
2π
∆
, X(Ω) = F {x(t)}

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p92



Band-limited signals

Suppose that the signal x(t) is a so-called band-limited signal, i.e.
the amplitude spectrum |X(Ω)| of the signal is non zero only if
|Ω| ≤ ΩB (where X(Ω) = F{x(t)}).

What happens if such a signal is sampled? In particular, what if
Ωs > 2ΩB , Ωs = 2ΩB or Ωs < 2ΩB ?
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Band-limited signals (cont.)

Band-limited signal
In rigorous terms, a signal is called a band-limited signal if

x(t) =

k=N∑
k=1

αk sin (Ωkt+ φk) , Ωk ≤ ΩB ∀k

or
x(t) =

∫ ΩB

0
α(Ω) sin [Ωt+ φ(Ω)] dΩ , Ω ∈ [0 , ΩB]
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Sampling and aliasing in the frequency domain (cont.)

Ωs > 2ΩB

• no overlapping of spectra, so no aliasing
• to reconstruct the original signal (to isolate the original
spectrum) a realizable (causal) low-pass filter is needed
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Sampling and aliasing in the frequency domain (cont.)

Ωs = 2ΩB

• still no overlapping of spectra, so no aliasing
• to reconstruct the original signal (to isolate the original
spectrum) an ideal (non-causal) low-pass filter is needed
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Sampling and aliasing in the frequency domain (cont.)

Ωs < 2ΩB

• overlapping of spectra, so aliasing
• no way to reconstruct the original signal (to isolate the original
spectrum)

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p97



Sampling Theorem

Nyquist-Shannon theorem
A continuous-time signal which contains no frequency
components greater than ΩB rad/s, is uniquely determined by the
signal samples{

xk = x(k∆) , k ∈ Z , ∆ : Ωs =
2π
∆

> 2ΩB

}
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Anti-aliasing filter

• How to guarantee the band limitedness of a signal?
• From a practical point of view, how to restrict the bandwidth of
the signal to the band of interest, with the aim to satisfy the
sampling theorem?

• anti-aliasing filter: a realizable low-pass filter

F (s) =
1

1+ s
Ω̄

, B =
[
0 , Ω̄

]
Ωs =

2π
∆

> 2Ω̄
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Aliasing in the s-plane

Recall the relationship between the starred transform and the
Laplace transform of the original continuous-time signal

X∗(s) =
1
∆

k=+∞∑
k=−∞

X (s− jkΩs) , Ωs =
2π
∆
, X(s) = L{x(t)}

and the relationship between the starred transform and the
Z-transform of the sampled sequence

z = es∆ ⇐⇒ s =
1
∆

log z

The aliasing effect may be analysed also in the s-plane of the
starred transform, exploiting such relations.
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Aliasing in the s-plane (cont.)

Consider two values into the s-plane of the starred transform, such
that

sp = sq + jkΩs , k ∈ Z

• The sampling relationship z = es∆ gives

zp ≡ zq ∀k ∈ Z

• Different values in the s-plane correspond to the same value in
the z-plane!
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Aliasing in the s-plane (cont.)

• There is no bijective correspondence between s- and z-plane.
Indeed, the s-plane may be divided into horizontal, Ωs wide
strips and the s-plane points, belonging to each of these strips,
correspond one-to-one to a unique point into the z-plane.

• The effect of sampling may be explained as transforming the
s-plane of the original signal’s Laplace transform into a series
of shifted strips (the s-plane of the starred signal), each of
them with the same zero and pole locations and finally folding
these strips on each other, in order to map the resulting folded
s-plane into the z-plane of the sampled signal’s Z-transform.
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Aliasing in the s-plane: Ωs > 2ΩB

• the primary strip contains the whole set of pole location of the
Laplace transform of the original continuous-time signal

• no aliasing
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Aliasing in the s-plane: Ωs = 2ΩB

• some pole locations may lay on the border between primary
and complementary strips

• still no aliasing
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Aliasing in the s-plane: Ωs < 2ΩB

• overlapping of pole location configurations
• aliasing

Note: the alias appear as poles with time constant values lower that
the original ones!
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C2d with sampler & hold

Consider the scheme

• How to obtain a discrete-time description of a linear,
time-invariant, continuous-time dynamic system?

• Both state variables and outputs are sampled by means of an
ideal sampler

• The inputs to the LTI systems are converted from discrete- to
continuous-time using a ZOH
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C2d with sampler & hold (cont.)

• Consider a LTI dynamic system, described by means of state
equations 

ẋ(t) =Acx(t) +Bcu(t)

y(t) =Ccx(t) +Dcu(t)

• The following expression holds

x(t) = eAc(t−t0)x (t0) +

∫ t

t0

eAc(t−τ)Bcu(τ) dτ

( from “Fundamentals of Automatic Control”) where

eAct = L−1
{
(sI −Ac)

−1
}
= I +Act+

A2ct
2

2 +
A3ct

3

3! + · · ·
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C2d with sampler & hold (cont.)

• Remember the stairwise behaviour of the output of a ZOH
device

u(t) = uk = u(k∆) , k∆ ≤ t < (k + 1) ∆ k ∈ Z

• Evaluate the state movement expression in a time interval
between two successive sampling instants k∆ and (k + 1)∆

x [(k + 1)∆]) = eAc∆x (k∆)+

{∫ (k+1)∆

k∆

eAc(t−τ)Bc) dτ

}
u (k∆)

the input u(t) is a constant signal
during the considered time interval
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C2d with sampler & hold (cont.)

• Substitute r = (k + 1)∆− τ into the integral term and rewrite
the last expression,

x [(k + 1)∆]) = eAc∆x (k∆) +

{∫ ∆

0
eAcrBc dr

}
u (k∆)

• By comparison with the expression of the discrete-time state
equations for the dynamic system considered

x [(k + 1)∆] =Adx (k∆) +Bdu (k∆)

y (k∆) =Cdx (k∆) +Ddu (k∆)

finally we obtain the continuous to discrete-time conversion
rule, applying ZOH (the so-called step–invariant transform)
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C2d with sampler & hold (cont.)

Step–invariant transform
Starting from a continuous-time LTI dynamic system

ẋ(t) =Acx(t) +Bcu(t)

y(t) =Ccx(t) +Dcu(t)

the corresponding discrete-time description, using a ZOH for
inputs and ideal samplers for state and output signals is given by

Ad = eAc∆ Bd =

∫ ∆

0
eAcrBc dr

Cd = Cc Dd = Dc
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C2d with sampler & hold: an example

Consider

and let’s determine the discrete-time description, by sampling with
ZOH and ideal samplers.
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C2d with sampler & hold: an example (cont.)

Applying the step-invariant transform
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C2d with sampler & hold: practical issues

Ad = eAc∆ Bd =

∫ ∆

0
eAcrBc dr

Cd = Cc Dd = Dc

• How does one determine in practice the matrices described
into the step-invariant transform?

• Are exact solutions or approximate expressions available?
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C2d with sampler & hold: practical issues (cont.)

Exact formulas for the step-invariant transform

Ad =eAc∆ ⇐= eAct = L−1
{
(sI −Ac)

−1
}

Bd =

∫ ∆

0
eAcrBc dr = A−1

c ·
[
eAc∆ − I

]
·Bc

Approximate expressions

Ad =eAc∆ ≈ I +Ac∆+
A2c∆

2

2 +
A3c∆

3

3! + · · ·

Bd =

∫ ∆

0
eAcrBc dr ≈

[
I +Ac∆+

A2c∆
2

2 +
A3c∆

3

3! + · · ·
]
·Bc
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Equivalent State-Space Representations

Consider the discrete-time dynamic system state-space
representation: {

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

Let x̂ := Tx , where T ∈ Rn×n is a generic non-singular n× n

matrix ( det(T ) ̸= 0 ).

Then, the equivalent state-space description is given by:{
x̂(k + 1) = Tx(k + 1) = Tf(T−1x̂(k), u(k), k) = f̂(x̂(k), u(k), k)

y(k) = g(T−1x̂(k), u(k), k) = ĝ(x̂(k), u(k), k)

by suitably defining functions f̂ and ĝ .
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Linear Dynamic Systems

Consider the discrete-time dynamic system state-space
representation: {

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

This state-space equation describes a linear system if and only if
the functions f(·) and g(·) are linear with respect to their state
and input vector arguments:

∀α1, α2 ∈ R, ∀x1, x2 ∈ Rn, ∀u1, u2 ∈ Rm :

f(α1x1 + α2x2, α1u1 + α2u2, k) = α1f(x1, u1, k) + α2f(x2, u2, k)

g(α1x1 + α2x2, α1u1 + α2u2, k) = α1g(x1, u1, k) + α2g(x2, u2, k)
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Linear Dynamic Systems: Matrix Form

Consider the state-space representation:{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

and suppose that the linearity assumption holds. Then:

f1(x, u, k) = a11(k)x1 + · · ·+ a1n(k)xn + b11(k)u1 + · · ·+ b1m(k)um
...
fn(x, u, k) = an1(k)x1 + · · ·+ ann(k)xn + bn1(k)u1 + · · ·+ bnm(k)um

y1 = c11(k)x1 + · · ·+ c1n(k)xn + d11(k)u1 + · · ·+ d1m(k)um
...
yp = cp1(k)x1 + · · ·+ cpn(k)xn + dp1(k)u1 + · · ·+ dpm(k)um

where aij(k), bij(k), cij(k), dij(k) are generic functions of the
discrete-time index k.
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Linear Dynamic Systems: Matrix Form (cont.)

Letting:

A(k) :=


a11(k) · · · a1n(k)

... . . . ...
an1(k) · · · ann(k)

 ; B(k) :=


b11(k) · · · b1m(k)

...
...

...
bn1(k) · · · bnm(k)



C(k) :=


c11(k) · · · c1n(k)

... . . . ...
cp1(k) · · · cpn(k)

 ; D(k) :=


d11(k) · · · d1m(k)

...
...

...
dp1(k) · · · dpm(k)



x(k) :=


x1(k)
...

xn(k)

 ; u(k) :=


u1(k)
...

um(k)

 ; y(k) :=


y1(k)
...

yp(k)


One gets: 

x(k + 1) = A(k)x(k) +B(k)u(k)

y(k) = C(k)x(k) +D(k)u(k)
DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p118



Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices A(k), B(k), C(k), D(k)

do not depend on the time-index k, that is are constant matrices
A,B,C,D :

A :=


a11 · · · a1n
... . . . ...
an1 · · · ann

 ; B :=


b11 · · · b1m
...

...
...

bn1 · · · bnm



C :=


c11 · · · c1n
... . . . ...
cp1 · · · cpn

 ; D :=


d11 · · · d1m
...

...
...

dp1 · · · dpm


and thus: 

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
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Time-Invariant Linear Dynamic Systems: Equilibrium States

Consider a linear time-invariant dynamic system:
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

and consider a constant input sequence u(k) = ū, k ≥ 0 . Hence,
one has to solve the following equation for x :

x = Ax+Bū =⇒ (I −A)x = Bū

The following two cases have to be considered:

• det (I −A) ̸= 0
• det (I −A) = 0
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Time-Invariant Linear Dynamic Systems: Equilibrium States

• det (I −A) ̸= 0 . In this case, one gets:

x̄ = (I −A)
−1
Bū =⇒ x̄ is unique ∀ ū ∈ Rm

Accordingly, the equilibrium output is given by:

ȳ = Cx̄+Dū =
[
C(I −A)

−1
B +D

]
ū

Matrix
[
C(I −A)

−1
B +D

]
is defined as static gain.

• det (I −A) = 0 . In this case, two different situations may occur:

• ∃∞ equilibrium states x̄, ∃∞ equilibrium outputs ȳ

• ̸ ∃ equilibrium states x̄, ̸ ∃ equilibrium outputs ȳ
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Equivalent State-Space Representations: LTI

Consider the discrete-time linear time-invariant (LTI) dynamic
system state-space representation:{

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)

Let x̂ := T−1x , where T ∈ Rn×n is a generic non-singular n× n

matrix ( det(T ) ̸= 0 ). Then, the equivalent state-space description is
given by:{

x̂(k + 1) = T−1x(k + 1) = T−1ATx̂(k) + T−1Bu(k) = Âx̂(k) + B̂u(k)

y(k) = CTx̂(k) +Du(k) = Ĉx̂(k) +Du(k)

Hence:{
x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
⇐⇒

{
x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k) +Du(k)

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p122



Linear Systems Obtained by Linearization

Basic Concept

• Linear systems are provided with numerous analytical tools
that are not available for nonlinear systems

• Approximating nonlinear systems by linear ones in a
”neighbourhood” of a nominal state movement may result very
useful in practice
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Linear Systems Obtained by Linearization (cont.)

• Consider the nonlinear system:{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

• Moreover, consider a nominal state movement x̄(k), k ≥ k0
obtained by the initial state x(k0) = x̄0 and the input sequence
u(k) = ū(k), k ≥ k0.

• Let us perturb the initial state and the nominal input sequence,
thus getting a perturbed state movement:

x(k0) = x̄0 + δx0 ; u(k) = ū(k) + δu(k) =⇒ x(k) = x̄(k) + δx(k)

• Hence:

x(k + 1) = x̄(k + 1) + δx(k + 1) = f(x̄(k) + δx(k), ū(k) + δu(k), k)

≃ f(x̄(k), ū(k), k) + fx(x̄(k), ū(k))δx(k) + fu(x̄(k), ū(k))δu(k)
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Linear Systems Obtained by Linearization (cont.)

• Since the nominal state sequence x̄(k) is the solution of the
difference equation x̄(k + 1) = f(x̄(k), ū(k), k) , it follows that

δx(k + 1) ≃ fx(x̄(k), ū(k))δx(k) + fu(x̄(k), ū(k))δu(k)

= A(k)δx(k) +B(k)δu(k)

where A(k) ∈ Rn×n, B(k) ∈ Rn×m, k ≥ k0 are defined as:

A(k) = fx(x̄(k), ū(k), k) =


∂f1
∂x1

· · · ∂f1
∂xn...
...

∂fn
∂x1

· · · ∂fn
∂xn


x(k)=x̄(k),u(k)=ū(k)

B(k) = fu(x̄(k), ū(k), k) =


∂f1
∂u1

· · · ∂f1
∂um...
...

∂fn
∂u1

· · · ∂fn
∂um


x(k)=x̄(k),u(k)=ū(k)
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Linear Systems Obtained by Linearization (cont.)

• Concerning the perturbed output one has:

ȳ(k) = g(x̄(k), ū(k), k) ; y(k) = ȳ(k) + δy(k)

Hence

y(k) = g(x(k), u(k), k) = g(x̄(k) + δx(k), ū(k) + δu(k), k)

≃ g(x̄(k), ū(k), k) + gx(x̄(k), ū(k))δx(k) + gu(x̄(k), ū(k))δu(k)

and then

δy(k) ≃ gx(x̄(k), ū(k))δx(k) + gu(x̄(k), ū(k))δu(k)

= C(k)δx(k) +D(k)δu(k)

where C(k) ∈ Rp×n, D(k) ∈ Rp×m, k ≥ k0 are defined as:
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Linear Systems Obtained by Linearization (cont.)

C(k) = gx(x̄(k), ū(k), k) =


∂g1
∂x1

· · · ∂g1
∂xn...
...

∂gp
∂x1

· · · ∂gp
∂xn


x(k)=x̄(k),u(k)=ū(k)

D(k) = gu(x̄(k), ū(k), k) =


∂g1
∂u1

· · · ∂g1
∂um...
...

∂gp
∂u1

· · · ∂gp
∂um


x(k)=x̄(k),u(k)=ū(k)

Summing up: the linear system obtained by linearization around a
given nominal state movement x̄(k), k ≥ k0 obtained by the initial
state x(k0) = x̄0 and the input sequence u(k) = ū(k), k ≥ k0 is{

δx(k + 1) = A(k)δx(k) +B(k)δu(k)

δy(k) = C(k)δx(k) +D(k)δu(k)
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Linear Systems Obtained by Linearization (cont.)

Important Special Case: Time-Invariant Systems

• Consider the nonlinear time-invariant system:{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

• Moreover, consider an equilibrium state x̄ obtained by the
constant input sequence u(k) = ū, k ≥ k0.

• Let us perturb the initial state and the nominal input sequence,
thus getting a perturbed state movement:

x(k0) = x̄0 + δx0 ; u(k) = ū+ δu(k) =⇒ x(k) = x̄+ δx(k)

• Hence:

x(k + 1) = x̄+ δx(k + 1) = f(x̄+ δx(k), ū+ δu(k))

≃ f(x̄, ū) + fx(x̄, ū)δx(k) + fu(x̄, ū)δu(k)
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Linear Systems Obtained by Linearization (cont.)

• Since the equilibrium state x̄ is the constant solution of the
algebraic equation x̄ = f(x̄, ū) , it follows that

δx(k + 1) ≃ fx(x̄, ū)δx(k) + fu(x̄, ū)δu(k)

= Aδx(k) +Bδu(k)

where A ∈ Rn×n, B ∈ Rn×m are constant matrices defined as:

A = fx(x̄, ū) =


∂f1
∂x1

· · · ∂f1
∂xn...
...

∂fn
∂x1

· · · ∂fn
∂xn


x(k)=x̄,u(k)=ū

B = fu(x̄, ū) =


∂f1
∂u1

· · · ∂f1
∂um...
...

∂fn
∂u1

· · · ∂fn
∂um


x(k)=x̄,u(k)=ū
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Linear Systems Obtained by Linearization (cont.)

• Concerning the perturbed output one has:

ȳ = g(x̄, ū) ; y(k) = ȳ + δy(k)

Hence

y(k) = g(x(k), u(k)) = g(x̄+ δx(k), ū+ δu(k))

≃ g(x̄, ū) + gx(x̄, ū)δx(k) + gu(x̄, ū)δu(k)

and then

δy(k) ≃ gx(x̄, ū)δx(k) + gu(x̄, ū)δu(k)

= Cδx(k) +Dδu(k)

where C ∈ Rp×n, D ∈ Rp×m are constant matrices defined as:
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Linear Systems Obtained by Linearization (cont.)

C = gx(x̄, ū) =


∂g1
∂x1

· · · ∂g1
∂xn...
...

∂gp
∂x1

· · · ∂gp
∂xn


x(k)=x̄,u(k)=ū

D = gu(x̄, ū) =


∂g1
∂u1

· · · ∂g1
∂um...
...

∂gp
∂u1

· · · ∂gp
∂um


x(k)=x̄,u(k)=ū

Summing up: the linear time-invariant system obtained by
linearization around a given equilibrium state x̄ obtained by the
constant input sequence u(k) = ū, k ≥ k0 is{

δx(k + 1) = Aδx(k) +Bδu(k)

δy(k) = Cδx(k) +Dδu(k)
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Linear Systems Obtained by Linearization: Example

Consider the nonlinear discrete-time system:
x1(k + 1) = x1(k) + α(1− βx1(k))x1(k)− γx1(k)x2(k) + u(k)

x2(k + 1) = x2(k)− δx2(k) + ηx1(k)x2(k)

y(k) = x2(k)

Imposing the constant input sequence ū(k) = 0 the following
equilibrium states are obtained:

x̄(1) =

[
0
0

]
; x̄(2) =

 1
β
0

 ; x̄(3) =


δ

η
α

γ

(
1− βδ

η

)
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Linear Systems Obtained by Linearization: Example (cont.)

The general expression for matrix A of the linearized system is:

fx(x̄, ū) =


∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


x̄,ū

=

=

[
(1+ α− 2αβx1 − γx2) −γx1

ηx2 1− δ + ηx1

]
x̄,ū

Substituting the expressions of the specific equilibrium states one
gets:

x̄(1) =

[
0
0

]
=⇒ Ā(1) =

[
(1+ α) 0
0 1− δ

]
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Linear Systems Obtained by Linearization: Example (cont.)

x̄(2) =

 1
β
0

 =⇒ Ā(2) =

 (1− α) −γ
β

0 1− δ +
η

β



x̄(3) =


δ

η
α

γ

(
1− βδ

η

)
 =⇒ Ā(3) =



(
1− αβδ

η

)
−γδ
η

αη

γ

(
1− βδ

η

)
1
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Linear Systems Obtained by Linearization: Example (cont.)

Finally, the other matrices B, C, and D of the linearized systems are
given by (their values do not depend on the specific equilibrium
states):

fu(x̄, ū) =

 ∂f1
∂u
∂f2
∂u


x̄,ū

=

[
1
0

]
= B̄

gx(x̄, ū) =

[
∂g

∂x1

∂g

∂x2

]
x̄,ū

=
[
0 1

]
x̄,ū

=
[
0 1

]
= C̄

gu(x̄, ū) =
∂g

∂u

∣∣∣∣
x̄,ū

= 0x̄,ū = 0 = D̄
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