Systems Dynamics

Course ID: 267MI - Fall 2018

Thomas Parisini
Gianfranco Fenu
University of Trieste
Department of Engineering and Architecture

Systems
 Systems

Systems Dynamics

267MI -Fall 2018

Lecture 1

Generalities: systems and models

| Definition of the
 "system" entity to
 be analysed | \Longrightarrow | Physical laws, a
 priori knowledge,
 heuristic | |
| :---: | :---: | :---: | :---: |\quad| Mathematical |
| :---: |
| models: algebraic |

Recalling from the Fundamentals in Control course
What is the meaning of "Dynamic"?

Dynamic Systems Described by State Equations

Dynamic Systems: Examples

$$
y(t)=R \cdot u(t)
$$

The system is NOT dynamic

$$
\begin{aligned}
& \left.\begin{array}{l}
u(t), t \in\left[t_{0}, t_{1}\right] \\
y\left(t_{0}\right)
\end{array}\right\} \\
& \quad \Longrightarrow y(t), t \in\left[t_{0}, t_{1}\right]
\end{aligned}
$$

The system is dynamic

Can $y(t)$ be determined in a unique way?
If the answer is

"NO" $\quad \Longrightarrow \quad$| The system is a |
| :--- |
| dynamic system |

DIA@Units - 267MI-Fall 2018

Dynamic Systems: Examples

The system is dynamic

State variables

Variables to be known at time $t=t_{0}$ in order to be able to determine the output $y(t), t \geq t_{0}$ from the knowledge of the input $u(t), t \geq t_{0}$:

$$
x_{i}(t), i=1,2, \ldots, n \quad \text { (state variables) }
$$

... In more rigorous terms \Longrightarrow

Dynamic Systems: Formal Definitions (cont.)

State transition function:

$$
\varphi: T \times T \times X \times \Omega \mapsto X \quad \Longrightarrow \quad x(t)=\varphi\left(t, t_{0}, x_{0}, u(\cdot)\right)
$$

1. Consistency: $\varphi\left(t_{0}, t_{0}, x_{0}, u(\cdot)\right)=x_{0}, \forall\left(t_{0}, x_{0}, u(\cdot)\right) \in T \times X \times \Omega$
2. Irreversibility: φ is defined $\forall t \geq t_{0}, t \in T$
3. Composition:

$$
\begin{aligned}
& \varphi\left(t_{2}, t_{0}, x_{0}, u(\cdot)\right)=\varphi\left(t_{2}, t_{1}, \varphi\left(t_{1}, t_{0}, x_{0}, u(\cdot)\right), u(\cdot)\right) \\
& \forall\left(t_{0}, u(\cdot)\right) \in T \times \Omega, \forall t_{0}, t_{1}, t_{2} \in T: t_{0}<t_{1}<t_{2}
\end{aligned}
$$

4. Causality:

$$
\begin{array}{r}
u_{\left[t_{0}, t\right)}^{\prime}(\cdot)=u_{\left[t_{0}, t\right)}^{\prime \prime}(\cdot) \Longrightarrow \varphi\left(t, t_{0}, x_{0}, u^{\prime}(\cdot)\right)=\varphi\left(t, t_{0}, x_{0}, u^{\prime \prime}(\cdot)\right) \\
\forall\left(t, t_{0}, x_{0}\right) \in T \times T \times X
\end{array}
$$

A dynamic system is an abstract entity defined in axiomatic way:

$$
\mathcal{S}=\{T, U, \Omega, X, Y, \Gamma, \varphi, \eta\}
$$

- T : set of time instants provided with an order relation
- U : set of admissible input values
- Ω : set of admissible control functions
- X : set of admissible state values
- Y : set of admissible output values
- Γ : set of admissible output functions
DIA@Units - 267MI -Fall 2018

Dynamic Systems: Formal Definitions (cont.)

Output function:

- Case 1: strictly proper system:

$$
\eta: T \times X \mapsto Y \Longrightarrow y(t)=\eta(t, x(t)), \forall t \in T
$$

- Case 2: non strictly proper system:

$$
\eta: T \times X \times U \mapsto Y \Longrightarrow y(t)=\eta(t, x(t), u(t)), \forall t \in T
$$

Dynamic Systems: Formal Definitions (cont.)

$\bar{x} \in X$ is an equilibrium state if $\forall t_{0} \in T, \exists u(\cdot) \in \Omega$ such that

$$
\varphi\left(t, t_{0}, \bar{x}, u(\cdot)\right)=\bar{x}, \forall t \geq t_{0}, t \in T
$$

$\bar{y} \in Y$ is an equilibrium output if $\forall t_{0} \in T, \exists \bar{x} \in X, \exists u(\cdot) \in \Omega$ such that

$$
\eta\left(t, \varphi\left(t, t_{0}, \bar{x}, u(\cdot)\right)\right)=\bar{y}, \forall t \geq t_{0}, t \in T
$$

Notice that, in general:

- the specific input function $u(\cdot) \in \Omega$ depends on the choice of the initial time-instant $t_{0} \in T$
- the fact that the state of a dynamic system is at equilibrium does not imply that the output is at equilibrium as well, unless $\eta(t, x(t))$ does not depend explicitly on time (in which case, the output function takes on the form $\eta(x(t))$)

Interconnection of Dynamic Systems

We consider interconnected systems

$$
\mathcal{S}=\{T, U, \Omega, X, Y, \Gamma, \varphi, \eta\}
$$

composed of N subsystems

$$
\mathcal{S}_{i}=\left\{T_{i}, U_{i}, \Omega_{i}, X_{i}, Y_{i}, \Gamma_{i}, \varphi_{i}, \eta_{i}\right\}, \quad i=1,2, \ldots N
$$

interacting with each other through their external variables such as inputs $u_{i}(\cdot) \in \Omega_{i}$ and outputs $y_{i}(\cdot) \in \Gamma_{i}$

Assumption. The interconnected system \mathcal{S} satisfies the formal definition of dynamic system

Cascade interconnection

$$
\begin{gathered}
\mathcal{S}=\left\{T=T_{1}=T_{2}, U=U_{1}, \Omega=\Omega_{1}, X=X_{1} \times X_{2}, Y=Y_{2}, \Gamma=\Gamma_{2}\right\} \\
\left\{\begin{array}{c}
\left(x_{1}(t), x_{2}(t)\right)=\left(\varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), u(\cdot)\right),\right. \\
\left.\varphi_{2}\left(t, t_{0}, x_{2}\left(t_{0}\right), \eta_{1}\left(t, \varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), u(\cdot)\right)\right)\right)\right) \\
y(t)=y_{2}(t)=\eta_{2}\left(t, x_{2}(t)\right)
\end{array}\right.
\end{gathered}
$$

Interconnection of Dynamic Systems

Feedback interconnection

Parallel interconnection

$$
\begin{gathered}
\mathcal{S}=\left\{T=T_{1}=T_{2}, U=U_{1}=U_{2}, \Omega=\Omega_{1}=\Omega_{2}, X=X_{1} \times X_{2}, Y=Y_{1} \times Y_{2},\right. \\
\left.\Gamma=\Gamma_{1} \times \Gamma_{2}\right\} \\
\left\{\begin{array}{c}
\left(x_{1}(t), x_{2}(t)\right)=\left(\varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), u(\cdot)\right), \varphi_{2}\left(t, t_{0}, x_{1}\left(t_{0}\right), u(\cdot)\right)\right) \\
\left.\varphi_{2}\left(t, t_{0}, x_{2}\left(t_{0}\right), \eta_{1}\left(t, \varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), u(\cdot)\right)\right)\right)\right) \\
\left(y_{1}(t), y_{2}(t)\right)=\left(\eta_{1}\left(t, x_{1}(t)\right), \eta_{2}\left(t, x_{2}(t)\right)\right)
\end{array}\right.
\end{gathered}
$$

DIA@Units - 267MI-Fall 2018

General scheme:

$$
\begin{aligned}
& u_{1}(t)=\psi_{1}\left(y_{2}(t), \nu_{1}(t), t\right) \\
& u_{2}(t)=\psi_{2}\left(y_{1}(t), \nu_{2}(t), t\right)
\end{aligned}
$$

Interconnection of Dynamic Systems

Feedback interconnection

Commonly used scheme:

$$
\begin{gathered}
\mathcal{S}=\left\{T=T_{1}=T_{2}, U=V_{1}, \Omega=\Omega_{\nu_{1}}, X=X_{1} \times X_{2}, Y=Y_{1}, \Gamma=\Gamma_{1}\right\} \\
\left\{\begin{array}{l}
\left(x_{1}(t), x_{2}(t)\right)=\left(\varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), \psi_{1}\left(\nu_{1}(\cdot), y_{2}(\cdot)\right), \varphi_{2}\left(t, t_{0}, x_{2}\left(t_{0}\right), y_{1}(\cdot)\right)\right)\right) \\
y(t)=y_{1}(t)=\eta_{1}\left(t, x_{1}(t)\right)
\end{array}\right.
\end{gathered}
$$

A dynamic systems is regular if:

- U, Ω, X, Y, Γ are normed vector spaces
- $\varphi(\cdot, \cdot, \cdot, \cdot)$ is a continuous function with respect its arguments - $\frac{\mathrm{d}}{\mathrm{d} t} \varphi\left(t, t_{0}, x_{0}, u(\cdot)\right)$ does exist and it is continuous for all values of the arguments where $u(\cdot)$ is continuous

The state movement $\varphi\left(t, t_{0}, x_{0}, u(\cdot)\right)$ of a regular finite-dimensional dynamic system is the unique solution of a suitable vector differential equation

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right.
$$

and

$$
y(t)=g(x(t), u(t), t)
$$

An example: continuous-time model of a car suspension

From a real vehicle ...

to a simplified quarter-car model DA@Units - 267M1-Fall 2018
quarter-car model hypotheses

- vehicle as assembly of four decoupled parts
- each part consists of
- the sprung mass: a quarter of the vehicle mass, supported by a suspension actuator, placed between the vehicle and the tyre
- the unsprung mass: the wheel/tyre sub-assembly
- the model allows only for vertical motion: the vehicle is moving forward with an almost constant speed

- inputs:
- ground vertical position vs. the steady-state
- active actuator force
- outputs:
- sprung mass vertical acceleration
- contact force between tyre and ground

DIA@UniTs - 267MI-Fall 2018

Continuous-time car suspension: an example

Assuming

$$
\begin{array}{lll}
m_{s}=400.0 \mathrm{~kg} & m_{u}=50.0 \mathrm{~kg} & c_{s}=2.010^{3} \mathrm{~N} \mathrm{~s} \mathrm{~m}^{-1} \\
k_{s}=2.010^{4} \mathrm{~N} \mathrm{~m}^{-1} & k_{u}=2.510^{5} \mathrm{~N} \mathrm{~m}^{-1} &
\end{array}
$$

- vertical positions of sprung and unsprung masses vs. the corresponding
steady-state values
- vertical speeds of masses

$$
\left\{\begin{array}{l}
x_{1}(t)=z_{s}(t)-\bar{z}_{s} \\
x_{2}(t)=z_{u}(t)-\bar{z}_{u} \\
x_{3}(t)=\dot{x}_{1}(t) \\
x_{4}(t)=\dot{x}_{2}(t) \\
u_{1}(t)=z_{r}(t)-\bar{z}_{r} \\
u_{2}(t)=F(t) \\
y_{1}(t)=\ddot{x}_{1} \\
y_{2}(t)=k_{u}\left(x_{2}(t)-u_{1}(t)\right)
\end{array}\right.
$$

the car suspension model becomes

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1.0 \\
-50.0 & 50.0 & -5.0 & 5.0 \\
400.0 & -5400.0 & 40.0 & -40.0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 2.510^{-3} \\
5.010^{3} & -2.010^{-2}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{cccc}
-50.0 & 50.0 & -5.0 & 5.0 \\
0 & 2.510^{5} & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 2.510^{-3} \\
-2.510^{5} & 0
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{array}\right.
$$

Let's get a sampled-time description of the same dynamic system:

- How does the sampled-time description correlate with the continuous-time model?
-What happens if we increase or decrease the sampling rate? Does the sampled-time model change with the sampling time?
- Does the sampled-time model describe the behaviour of the continuous-time dynamic system for any possible choice of the sampling time value?

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
9.9810^{-1} & 2.05 \cdot 10^{-5} & 9.98 \cdot 10^{-4} & 2.47 \cdot 10^{-6} \\
1.97 \cdot 10^{-4} & 0.99 & 1.98 \cdot 10^{-5} & 9.80 \cdot 10^{-4} \\
-4.89 \cdot 10^{-2} & 3.65 \cdot 10^{-3} & 9.95 \cdot 10^{-1} & 4.91 \cdot 10^{-3} \\
3.91 \cdot 10^{-1} & -5.29 & 3.93 \cdot 10^{-2} & 0.96
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]} \\
& +\left[\begin{array}{cc}
4.13 \cdot 10^{-6} & 1.23 \cdot 10^{-9} \\
2.47 \cdot 10^{-3} & -9.85 \cdot 10^{-9} \\
1.24 \cdot 10^{-2} & 2.44 \cdot 10^{-6} \\
4.90 & -1.95 \cdot 10^{-5}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { DIA@Units - 267MI-Fall } 2018
\end{aligned}
$$

Step responses comparison

From u_{1} to y_{1}

$$
\left(\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1.17 \cdot 10^{-1} & -1.76 \cdot 10^{-2} & 4.65 \cdot 10^{-3} & 1.34 \cdot 10^{-4} \\
7.75 \cdot 10^{-3} & -4.87 \cdot 10^{-3} & 1.07 \cdot 10^{-3} & 1.29 \cdot 10^{-5} \\
-1.79 \cdot 10^{-1} & -4.90 \cdot 10^{-1} & 9.94 \cdot 10^{-2} & 3.64 \cdot 10^{-4} \\
-4.84 \cdot 10^{-2} & -1.62 \cdot 10^{-2} & 2.91 \cdot 10^{-3} & -2.95 \cdot 10^{-5}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]\right.
$$

$$
+\left[\begin{array}{cc}
9.00 \cdot 10^{-1} & 4.41 \cdot 10^{-5} \\
9.97 \cdot 10^{-1} & -3.88 \cdot 10^{-7} \\
6.70 \cdot 10^{-1} & 8.96 \cdot 10^{-6} \\
6.46 \cdot 10^{-2} & 2.42 \cdot 10^{-6}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right]
$$

$$
\text { DIA@Units - 267MI -Fall } 2018 \quad \text { TP GF - L1-P26 }
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{1}(k) \\
y_{2}(k)
\end{array}\right]=\left[\begin{array}{cccc}
-50.0 & 50.0 & -5.0 & 5.0 \\
0 & 2.5 \cdot 10^{5} & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k
\end{array}\right]} \\
& +\left[\begin{array}{cc}
0 & 2.5 \cdot 10^{-3} \\
-2.5 \cdot 10^{5} & 0
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right]
\end{aligned}
$$

Step responses comparison (cont.)

Step responses comparison (cont.)

Step responses comparison (cont.)

DIA@Units - 267MI-Fall 2018

Sampled-time car suspension description (cont.)

Remarks

- by selecting different sampling rate we obtained different representations of the same continuous-time dynamic system
- sampling may heavily distort the information, giving a completely wrong discrete-time representation of the original continuous-time system: indeed the model obtained using one sample per second as the sampling rate is wrong!

Continuous-time State Equations
\square
$x_{1}(t), \ldots, x_{n}(t) \in \mathbb{R}$
$\forall t \in \mathbb{R}$
$u_{1}(t), \ldots, u_{m}(t) \in \mathbb{R}$

State equations (dynamic)

$$
\left\{\begin{array}{c}
\dot{x}_{1}(t)=f_{1}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right) \\
\vdots \\
\dot{x}_{n}(t)=f_{n}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right)
\end{array}\right.
$$

Output equations (algebraic)

$$
\left\{\begin{array}{c}
y_{1}(t)=g_{1}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right) \\
\vdots \\
y_{p}(t)=g_{p}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right)
\end{array}\right.
$$

Continuous-time State Equations (cont.)
Discrete-time State Equations

State equations
\quad (dynamic) $\left\{\begin{array}{c}x_{1}(k+1)=f_{1}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right) \\ \vdots \\ x_{n}(k+1)=f_{n}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right)\end{array}\right.$
Output equations
(algebraic) $\quad\left\{\begin{array}{c}y_{1}(k)=g_{1}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right) \\ \vdots \\ y_{p}(k)=g_{p}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right)\end{array}\right.$
DIA@Units - 267MI-Fall 2018
TP GF - L1-P34

Discrete-time State Equations (cont.)

$$
\begin{gathered}
u(k)=\left[\begin{array}{c}
u_{1}(k) \\
\vdots \\
u_{m}(k)
\end{array}\right] \in \mathbb{R}^{m}, y(k)=\left[\begin{array}{c}
y_{1}(k) \\
\vdots \\
y_{p}(k)
\end{array}\right] \in \mathbb{R}^{p} \\
x(k)=\left[\begin{array}{c}
x_{1}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right] \in \mathbb{R}^{n}
\end{gathered}
$$

$$
f(x, u, k)=\left[\begin{array}{c}
f_{1}(x, u, k) \\
\vdots \\
f_{n}(x, u, k)
\end{array}\right] \in \mathbb{R}^{n}
$$

$$
f(x, u, k)=\left[\begin{array}{c}
f_{1}(x, u, k) \\
\vdots \\
f_{n}(x, u, k)
\end{array}\right] \in \mathbb{R}^{n} \quad\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k)
\end{array}\right.
$$

More Definitions and Properties

- Time-invariant Dynamic Systems

- Strictly Proper Dynamic Systems

$$
\begin{aligned}
& \left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
\left.y(t)=g\left(x(t), y()^{\prime}\right), t\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), \text {, w(k), }, k)
\end{array}\right.
\end{aligned} \Longrightarrow\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
y(t)=g(x(t), t)
\end{array}\right\}
$$

- Forced and Free Dynamic Systems

It is worth noting that in case the input function $u(t), \forall t$ or input sequence $u(k), \forall k$ are known beforehand, the dynamic system can be re-written as a free one:

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t)=\widetilde{f}(x(t), t) \\
y(t)=g(x(t), u(t), t)=\widetilde{g}(x(t), t) \\
x(k+1)=f(x(k), u(k), k)=\widetilde{f}(x(k), k) \\
y(k)=g(x(k), u(k), k)=\widetilde{g}(x(k), k)
\end{array}\right.
$$

More Definitions and Properties (cont.)

- Forced Movement

$$
\left.\begin{array}{l}
\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
y(t)=g(x(t), u(t), t) \\
\text { with: } \\
\quad x\left(t_{0}\right)=0
\end{array} \\
\\
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k) \\
\text { with: } \\
\quad x\left(k_{0}\right)=0
\end{array} \quad \Longrightarrow \quad \begin{array}{c}
\left\{\left(x_{f}(t), t\right), t \in\left[t_{0}, t_{1}\right]\right\} \\
\text { forced movement }
\end{array}\right\}
$$

- Free Movement

$$
\left.\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
y(t)=g(x(t), u(t), t) \\
\text { with: } \\
\quad x\left(t_{0}\right)=x_{0} ; u(t)=0, \forall t \\
\\
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k) \\
\text { with: } \\
\quad x\left(k_{0}\right)=x_{0} ; u(k)=0, \forall k
\end{array} \quad \Longrightarrow \quad \begin{array}{c}
\left\{\left(x_{l}(t), t\right), t \in\left[t_{0}, t_{1}\right]\right\} \\
\text { free movement }
\end{array}\right] \begin{array}{cc}
\\
&
\end{array}
$$

Discrete-time Systems

Consider:

$$
\begin{aligned}
& x(k+1)=f(x(k), u(k), k) \\
& y(k)=g(x(k), u(k), k)
\end{aligned}
$$

Clearly, by iterating the state equations:

$$
\begin{aligned}
x\left(k_{0}\right) & =x_{0} \\
x\left(k_{0}+1\right) & =f\left(x\left(k_{0}\right), u\left(k_{0}\right), k_{0}\right) \\
x\left(k_{0}+2\right) & =f\left(x\left(k_{0}+1\right), u\left(k_{0}+1\right), k_{0}+1\right) \\
& =f\left(f\left(x\left(k_{0}\right), u\left(k_{0}\right), k_{0}\right), u\left(k_{0}+1\right), k_{0}+1\right) \\
x\left(k_{0}+3\right) & =f\left(x\left(k_{0}+2\right), u\left(k_{0}+2\right), k_{0}+2\right) \\
& =f\left(f\left(f\left(x\left(k_{0}\right), u\left(k_{0}\right), k_{0}\right), u\left(k_{0}+1\right), k_{0}+1\right), u\left(k_{0}+2\right), k_{0}+2\right)
\end{aligned}
$$

and so on. Hence, the state transition function has the form

$$
x(k)=\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right)
$$

thus enhancing the causality property.

Equilibrium Analysis: Equilibrium States and Outputs

$$
\begin{aligned}
& x(k+1)=f(x(k), u(k), k) \\
& y(k)=g(x(k), u(k), k)
\end{aligned}, x\left(k_{0}\right)=x_{0}, u_{a}(k)=u(k), k \in\left\{k_{0}, \ldots, k_{1}\right\}
$$

yields the state sequence $x_{a}(k), k \in\left\{k_{0}, \ldots, k_{1}\right\}$. Let's shift the initial time by \bar{k} and the input sequence as well:

$$
\begin{aligned}
& x\left(k_{0}+\bar{k}\right)=x_{0} \\
& \begin{array}{l}
\begin{array}{l}
u_{b}(k)=u_{a}(k-\bar{k}), \\
k \in\left\{k_{0}+\bar{k}, \ldots, k_{1}+\bar{k}\right\}
\end{array}
\end{array} \Longrightarrow \quad \begin{array}{c}
x_{b}(k)=x_{a}(k-\bar{k}), \\
k \in\left\{k_{0}+\bar{k}, \ldots, k_{1}+\bar{k}\right\}
\end{array}
\end{aligned}
$$

Conventionally, we set $k_{0}=0$.
DIA@Units - 267MI-Fall $2018 \quad$ TPGF - L1-P41

Equilibrium Analysis in the Time-invariant Case

In the time-invariant case, all equilibrium states can be determined by imposing constant input sequences.
A state $\bar{x} \in \mathbb{R}^{n}$ is an equilibrium state if $\exists \bar{u} \in \mathbb{R}^{m}$ such that

$$
\begin{aligned}
& x\left(k_{0}\right)=\bar{x} \\
& u(k)=\bar{u}, \forall k \geq k_{0}
\end{aligned} \Longrightarrow x(k)=\bar{x}, \forall k>k_{0}
$$

All equilibrium states $\bar{x} \in \mathbb{R}^{n}$ can thus be obtained by finding all solutions of the algebraic equation

$$
\bar{x}=f(\bar{x}, \bar{u}), \quad \forall \bar{u} \in \mathbb{R}^{m}
$$

The following sets are also introduced:

$$
\begin{aligned}
& \bar{X}_{\bar{u}}=\left\{\bar{x} \in \mathbb{R}^{n}: \bar{x}=f(\bar{x}, \bar{u})\right\} \\
& \bar{X}=\left\{\bar{x} \in \mathbb{R}^{n}: \exists \bar{u} \in \mathbb{R}^{m} \text { such that } \bar{x}=f(\bar{x}, \bar{u})\right\}
\end{aligned}
$$

- A state $\bar{x} \in \mathbb{R}^{n}$ is an equilibrium state if $\forall k_{0}$, $\exists\left\{\bar{u}(k) \in \mathbb{R}^{m}, k \geq k_{0}\right\}$ such that

$$
\begin{aligned}
& x\left(k_{0}\right)=\bar{x} \\
& u(k)=\bar{u}(k), \forall k \geq k_{0}
\end{aligned} \Longrightarrow x(k)=\bar{x}, \forall k>k_{0}
$$

- An output $\bar{y} \in \mathbb{R}^{p}$ is an equilibrium output if $\forall k_{0}$, $\exists\left\{\bar{u}(k) \in \mathbb{R}^{m}, k \geq k_{0}\right\}$ such that

$$
\begin{aligned}
& x\left(k_{0}\right)=\bar{x} \\
& u(k)=\bar{u}(k), \forall k \geq k_{0}
\end{aligned} \Longrightarrow y(k)=\bar{y}, \forall k>k_{0}
$$

In general:

- The input sequence $\left\{\bar{u}(k) \in \mathbb{R}^{m}, k \geq k_{0}\right\}$ depends on the initial time k_{0}
- The fact that the state is of equilibrium does not imply that the corresponding output coincides with an equilibrium output

But ... How to determine a state space description?

Recall:

State variables

Variables to be known at time $t=t_{0}$ in order to be able to determine the output $y(t), t \geq t_{0}$ from the knowledge of the input $u(t), t \geq t_{0}$:

$$
x_{i}(t), i=1,2, \ldots, n \quad \text { (state variables) }
$$

A "physical" criterion

State variables can be defined as entities associated with storage of mass, energy, etc.

For example:

- Passive electrical systems: voltages on capacitors, currents on inductors
- Translational mechanical systems: linear displacements and velocities of each independent mass
- Rotational mechanical systems: angular displacements and velocities of each independent inertial rotating mass
- Hydraulic systems: pressure or level of fluids in tanks
- Thermal systems: temperatures

Electrical systems

$$
\begin{aligned}
& \text { a) } \\
& L \frac{d i_{L}}{d t}=v-R i_{L}-v_{C} \\
& \text { b) }
\end{aligned}
$$

$$
\begin{aligned}
& C \frac{d v_{C}}{d t}=i_{L} \\
& L \frac{d i_{L}}{d t}=v_{C} \\
& x_{1}:=i_{L} ; x_{2}:=v_{C} \\
& \left\{\begin{array} { l }
{ \dot { x } _ { 1 } = - \frac { R } { L } x _ { 1 } - \frac { 1 } { L } x _ { 2 } + \frac { 1 } { L } v } \\
{ \dot { x } _ { 2 } = \frac { 1 } { C } x _ { 1 } }
\end{array} \quad \left\{\begin{array}{l}
\dot{x}_{1}=\frac{1}{L} x_{2} \\
\dot{x}_{2}=-\frac{1}{C} x_{1}-\frac{1}{R C} x_{2}+\frac{1}{C} i v
\end{array}\right.\right.
\end{aligned}
$$

A mechanical system

$$
m \ddot{q}+\beta \dot{q}+k q=f
$$

$$
\begin{aligned}
& x_{1}:=q \\
& x_{2}:=\dot{q}
\end{aligned} \quad \Longrightarrow \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] ; \quad\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=\ddot{q}=-\frac{k}{m} x_{1}-\frac{\beta}{m} x_{2}+\frac{1}{m} f
\end{array}\right.
$$

State Space Descriptions: Example 3 (discrete-time)

Student dynamics: 3-years undergraduate course

- percentages of students promoted, repeaters, and dropouts are roughly constant
- direct enrolment in 2nd and 3rd academic year is not allowed
- students cannot enrol for more than 3 years
- $x_{i}(k)$: number of students enrolled in year i at year $k, i=1,2,3$
- $u(k)$: number of freshmen at year k

$$
\left\{\begin{array}{l}
x_{1}(k+1)=\beta_{1} x_{1}(k)+u(k) \\
x_{2}(k+1)=\alpha_{1} x_{1}(k)+\beta_{2} x_{2}(k) \\
x_{3}(k+1)=\alpha_{2} x_{2}(k)+\beta_{3} x_{3}(k) \\
y(k)=\alpha_{3} x_{3}(k)
\end{array}\right.
$$

- $y(k)$: number of graduates at year k
- α_{i} : promotion rate during year i,
$\alpha_{i} \in[0,1]$
- β_{i} : failure rate during year i, $\beta_{i} \in[0,1]$
- γ_{i} : dropout rate during year i,

$$
\gamma_{i}=1-\alpha_{i}-\beta_{i} \geq 0
$$

Supply chain

- S purchases the quantity $u(k)$ of raw material at each month k
- A fraction δ_{1} of raw material is discarded, a fraction α_{1} is shipped to producer P
- A fraction α_{2} of product is sold by P to retailer R, a fraction δ_{2} is discarded
- Retailer R returns a fraction β_{3} of defective products every month, and sells a fraction γ_{3} to customers

State Space Descriptions (cont.)

A "mathematical" criterion

- Continuous-time case. An input-out differential equation model of the system is available:

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} t^{n}}=\varphi\left(\frac{\mathrm{d}^{n-1} y}{\mathrm{~d} t^{n-1}}, \ldots, \frac{\mathrm{~d} y}{\mathrm{~d} t}, y, u, t\right)
$$

- Discrete-time case. An input-out difference equation model of the system is available:

$$
y(k+n)=\varphi(y(k+n-1), y(k+n-2), \ldots, y(k), u(k), k)
$$

Suitable state variables - without necessarily a physical meaning - are defined to represent "mathematically" the differential equation or the difference equation models of the dynamic system

State Space Descriptions (cont.)

Continuous-time case:

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} t^{n}}=\varphi\left(\frac{\mathrm{d}^{n-1} y}{\mathrm{~d} t^{n-1}}, \ldots, \frac{\mathrm{~d} y}{\mathrm{~d} t}, y, u, t\right)
$$

Letting:

$$
\left\{\begin{array}{l}
x_{1}(t):=y(t) \\
x_{2}(t):=\frac{\mathrm{d} y}{\mathrm{~d} t} \\
\vdots \\
x_{n}(t):=\frac{\mathrm{d}^{n} y}{\mathrm{~d} t^{n}}
\end{array} \quad \Longrightarrow \quad x:=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]\right.
$$

one gets:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=x_{3} \\
\vdots \\
\dot{x}_{n}=\varphi(x, u, t) \\
y=x_{1}
\end{array}\right.
$$

State Space Descriptions (cont.)

State Space Descriptions (cont.)

Discrete-time case:

$$
y(k+n)=\varphi(y(k+n-1), y(k+n-2), \ldots, y(k), u(k), k)
$$

Letting:

$$
\left\{\begin{array}{l}
x_{1}(k):=y(k) \\
x_{2}(k):=y(k+1) \\
\vdots \\
x_{n}(k):=y(k+n-1)
\end{array} \quad \Longrightarrow \quad x:=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]\right.
$$

one gets:

$$
\left\{\begin{array}{l}
x_{1}(k+1)=x_{2}(k) \\
x_{2}(k+1)=x_{3}(k) \\
\vdots \\
x_{n}(k)=\varphi(x, u, k) \\
y(k)=x_{1}(k)
\end{array}\right.
$$

State Space Descriptions (cont.)

The state space description is not unique

- The fact that physical and non-physical approaches can be followed to describe the same dynamic system in state-space form clearly reveals the non-uniqueness of this representation
- Later on some more details will be given concerning equivalent state space descriptions

Example (discrete-time):

$$
w(k)-3 w(k-1)+2 w(k-2)-w(k-3)=6 u(k)
$$

Letting:

$$
\left\{\begin{array}{l}
x_{1}(k):=w(k-3) \\
x_{2}(k):=w(k-2) \\
x_{3}(k):=w(k-1)
\end{array} \quad \Longrightarrow \quad x:=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right.
$$

one gets:

$$
\left\{\begin{array}{l}
x_{1}(k+1)=x_{2}(k) \\
x_{2}(k+1)=x_{3}(k) \\
x_{3}(k+1)=3 x_{3}(k)-2 x_{2}(k)+x_{1}(k)+6 u(k) \\
y(k)=x_{3}(k)
\end{array}\right.
$$

Remarks

- Till now we carried out a general treatment of dynamic systems considering both the continuous-time and the discrete-time cases
- Since the course is intended to cover data-based system dynamics, analysis and estimation, from now on only the discrete-time case will be dealt with
- However, before doing this, the issue of conversion of a continuous-time into a discrete-time by sampling has to be dealt with in some detail

Continuous-time vs. discrete-time signals

- continuous-time signal: a function of time (independent variable) $x=x(t)$, such that the independent variable time is continuous
- the domain of the function $x=x(t)$ has the cardinality of the real numbers set \mathbb{R}.
- discrete-time signal: a signal $y=y(k)$, specified only for discrete values of time (the independent variable)
- the domain of the function $y=y(k)$ has the cardinality of the integer numbers set \mathbb{Z}.
- a discrete-time signal is usually called sequence

Analog vs. digital signals

- analog signal: the amplitude of the signal may vary in a continuous range
- an analog signal can be both continuous-time and discrete-time signal.
- digital signal: a signal whose amplitude is quantized, i.e. the amplitude of a digital signal can take only a finite number of values.
- a digital signal can be both continuous-time and discrete-time signal.

Signal taxonomy: graphical summary

Sampling \& digital coding: main issues

$$
e(t) \rightsquigarrow e_{k}=e\left(k T_{s}\right) \rightsquigarrow 011010 \ldots
$$

The conversion of an analog, continuous-time signal $e=e(t)$ to a digital, discrete-time sequence is subject to two main issues:

- loss of information, due to the conversion from continuous-time to discrete-time (more details later)
- quantisation noise and distortion, due to the analog to digital conversion process

Sampling issues taken into account

- sampling and the loss of information, a glimpse on the theoretical motivations of, and how to cope with this issue are discussed topics
- quantisation and coding issues are not taken into account

Sampling \& digital coding: main issues (cont.)

The ideal sampler

From now on, consider the sampling procedure simply as a conversion from an analog, continuous-time signal to an analog, discrete-time signal.

Moreover, hereafter each time-based signal will be labelled just as continuous-time or discrete-time signal.

DIA@Units - 267MI-Fall 2018

The ideal sampler (cont.)

An ideal sampler acts as an ideal electrical switch

- the switch commutes between the two states "open" and "closed", driven by a periodic pulse signal (called the clock signal), with the time period equal to the sampling period Δ;
- when a clock pulse occurs, the switch closes instantaneously, the actual sample of the input signal can be "copied" into the sampler output and then the switch commutes (instantaneously) to the "open" state, waiting for the next clock pulse.

How to convert a continuous-time signal to a discrete-time one?

Periodic sampling using an ideal sampler

- the aim of the A/D converter is to transform a continuous-time signal $x(t)$ into a discrete-time sequence $x(k)$
- given a time interval Δ, called sampling period, applying a periodic sampling means to extract and collect, creating a sequence, values of the signal corresponding to time instants, integer multiples of the sampling period

$$
\{x(k)\}_{k \in \mathbb{N}} \Longrightarrow\{x(t): t=k \Delta, k \in \mathbb{N}\}
$$

The ideal sampler (cont.)

Sampling rate

Given the sampling period Δ, let's define the rate of conversion from continuous to discrete time using

- sampling angular frequency

$$
\Omega_{\mathrm{s}}=\frac{2 \pi}{\Delta} \quad[\mathrm{rad} / \mathrm{s}]
$$

- sampling frequency

$$
f_{\mathrm{s}}=\frac{1}{\Delta} \quad[\mathrm{~Hz}]
$$

The reconstructor (cont.)

Reconstruction using a D/A converter (cont.)

- the ZOH clamps the output signal to a value corresponding to that of the input sequence at the current clock pulse, until the next clock pulse arrives.

$$
x(t)=x(k), k \Delta_{\mathrm{H}} \leq t<(k+1) \Delta_{\mathrm{H}} \quad k \in \mathbb{N}
$$

- the time period Δ_{H} is called holding period.

Note that the output signal of a ZOH is a stair-wise signal

The reconstructor (cont.)

$$
\stackrel{x_{k}}{x_{i} \cdot \| \cdot:_{k}} \frac{x_{k}}{\mathrm{D} / \mathrm{A}} \underset{\Delta_{k}}{x(t)} \stackrel{x(t)}{\Gamma-\Gamma^{-}}
$$

Holding rate

Given the holding period Δ_{H}, let's define the rate of conversion for a
D/A device using

- holding angular frequency

$$
\Omega_{\mathrm{H}}=\frac{2 \pi}{\Delta_{\mathrm{H}}} \quad[\mathrm{rad} / \mathrm{s}]
$$

- holding frequency

$$
f_{\mathrm{H}}=\frac{1}{\Delta_{\mathrm{H}}} \quad[\mathrm{~Hz}]
$$

Usually the sampling and holding frequencies have the same value.

- What happens if a continuous-time signal is firstly sampled and then reconstructed? How is the output signal of the ZOH w.r.t the original continuous-time signal? The same or?
- Indeed, the output of the ZOH is a stair-wise signal, so the reconstructed signal is different from the original one: sampling and reconstruction are just approximately the opposite function of each other.

- In general, reconstructing the continuous-time signal starting from the samples is an ill-posed problem: the reconstruction may be ambiguous.

Sampling a sinusoidal signal (cont.)

Reducing the sampling period (i.e. increasing the sampling frequency) the ambiguity disappears: no more frequency fold-over effect.

$$
\Delta=\frac{P}{4}=\frac{\pi}{2 \bar{\Omega}}
$$

By choosing properly the sampling period, the frequency aliasing effect has been avoided. Note: the effective sampling frequency is much higher than the signal time frequency.

Sampling a sinusoidal signal

Consider the signal $x(t)=\sin (\bar{\Omega} t) \quad P=\frac{2 \pi}{\bar{\Omega}}$

Select as sampling period the value

$$
\Delta=\frac{3}{4} P=\frac{3 \pi}{2 \bar{\Omega}}
$$

Indeed, it's easy to determine sinusoidal signals, with period $\hat{P}>P$, that may generate the same values, obtained by sampling $x(t)$.

Note: the frequency of the ambiguous signal is lower than the frequency of the original signal. This effect is called frequency aliasing (or frequency fold-over).
DIA@Units - 267MI-Fall 2018

Ideal sampler \& ZOH: mathematical model

- So far, it has been illustrated by examples that, when sampling a simple sinusoidal signal, choosing properly the sampling period grants to avoid the aliasing effect.
- How to generalize? What is the effect of the sampling procedure? How does the choice of the sampling period influence the frequency aliasing effect?

The influence of the sampling period on the aliasing effect will be explained by modelling the direct connection of an ideal sampler to a ZOH (Δ is the sampling period)

Ideal sampler \& ZOH: mathematical model (cont.)

Ideal sampler \& ZOH: mathematical model (cont.)

Applying the Laplace transform
$\mathcal{L}\{1(t-k \Delta)\}=\frac{e^{-k \Delta s}}{s}$
$\mathcal{L}\{h(t)\}=H(s)=\sum_{k=0}^{+\infty} x(k \Delta) \frac{e^{-k \Delta s}-e^{-(k+1) \Delta s}}{s}$

Ideal sampler \& ZOH: mathematical model (cont.)

So far, we demonstrated the equivalence between the following two structures

where $x^{*}(t)=\mathcal{L}^{-1}\left\{X^{*}(s)\right\} \quad X^{*}(s) \triangleq \sum_{k=0}^{+\infty} x(k \Delta) e^{-k \Delta s}$

Ideal sampler as impulse modulator

Ideal sampler as impulse modulator (cont.)

Note: $x^{*}(t)$ is a continuous-time signal representation of the ideal sampler output (indeed a sequence of samples)

$$
x^{*}(t)=\mathcal{L}^{-1}\left\{X^{*}(s)\right\}=\mathcal{L}^{-1}\left\{\sum_{k=0}^{+\infty} x(k \Delta) e^{-k \Delta s}\right\}
$$

Now, recalling the main properties of the Dirac delta function

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{e^{-k \Delta s}\right\}=\delta(t-k \Delta) \quad \delta(t)=\left\{\begin{array}{cc}
0 & \forall t \neq 0 \\
+\infty & t=0
\end{array}\right. \\
& \int_{-\infty}^{+\infty} \delta(t) d t=1 \quad \int_{-\infty}^{+\infty} f(t) \delta(t-\tau) d t=f(\tau)
\end{aligned}
$$

the signal $x^{*}(t)$ can be expressed as

$$
x^{*}(t)=\mathcal{L}^{-1}\left\{\sum_{k=0}^{+\infty} x(k \Delta) e^{-k \Delta s}\right\}=\sum_{k=0}^{+\infty} x(k \Delta) \delta(t-k \Delta)
$$

DIA@Units - 267MI-Fall 2018

Laplace- \& Z-transform of ideal sampler output signal

- Since the output of the impulse modulator may be described as a continuous-time signal $x^{*}(t)$ but also as a discrete-time sequence $x(k \Delta)$, how to correlate such representations?
- Consider the Laplace-transform of $x^{*}(t)$ and the Z-transform of the sequence $x(k \Delta)$

$$
\begin{gathered}
\mathcal{L}\left\{x^{*}(t)\right\}=X^{*}(s)=\sum_{k=0}^{+\infty} x(k \Delta) e^{-k \Delta s} \\
\mathcal{Z}\{x(k \Delta)\}=X(z)=\sum_{k=0}^{+\infty} x(k \Delta) z^{-k}
\end{gathered}
$$

It's easy to find that using the substitutions

$$
z=e^{s \Delta} \quad \Longleftrightarrow \quad s=\frac{1}{\Delta} \log z
$$

the Laplace transform may be rewritten as Z-transform and vice-versa.

$$
\begin{aligned}
x^{*}(t) & =\sum_{k=0}^{+\infty} x(k \Delta) \delta(t-k \Delta) \\
& =\sum_{k=0}^{+\infty} x(t) \delta(t-k \Delta) \\
& =x(t) \cdot \sum_{k=0}^{+\infty} \delta(t-k \Delta) \\
& =x(t) \cdot \delta_{\Delta}(t)
\end{aligned}
$$

where

$$
\delta_{\Delta}(t)=\sum_{k=0}^{+\infty} \delta(t-k \Delta)
$$

Properties of $\mathrm{X}^{*}(\mathrm{~s}): \mathrm{X}^{*}(\mathrm{~s})$ vs $\mathrm{X}(\mathrm{s})$

Definition: starred transform

The function $X^{*}(s)=\mathcal{L}\left\{x^{*}(t)\right\}$ is usually called the starred transform.

Property 1: the starred transform $\mathrm{X}^{*}(\mathrm{~s})$ vs. $\mathrm{X}(\mathrm{s})$

The starred transform may be expressed as a scaled summation of infinite copies of the Laplace transform of the original analog signal $X(s)=\mathcal{L}\{x(t)\}$, shifted each other by $j \Omega_{s}$ (where $\Omega_{\mathrm{s}}=\frac{2 \pi}{\Delta}$ and Δ is the sampling period)

$$
X^{*}(s)=\frac{1}{\Delta} \sum_{k=-\infty}^{k=+\infty} X\left(s-j k \Omega_{\mathrm{s}}\right), \quad \Omega_{\mathrm{s}}=\frac{2 \pi}{\Delta}, \quad X(s)=\mathcal{L}\{x(t)\}
$$

- the signal $x^{*}(t)$ can be expressed as the result of the modulation of the original signal $x(t)$ with a train of Dirac impulses
- owing to this result, the ideal sampler is also referred as an impulse modulator

$1^{\text {st }}$ property of starred transform - sketch of proof

$1^{\text {st }}$ property of starred transform - sketch of proof (cont.)

Proof-a sketch

Recall the ideal sampler output expression

$$
x^{*}(t)=\sum_{k=0}^{+\infty} x(k \Delta) \delta(t-k \Delta)
$$

Remember: the original, analog signal $x(t)$ is a causal signal. Owing this property, the summation may be modified

$$
x(t) \equiv 0 \forall t<0 \quad \Longrightarrow \quad x^{*}(t)=\sum_{k=-\infty}^{+\infty} x(k \Delta) \delta(t-k \Delta)
$$

According to this modification, let's redefine also the impulse train

$$
\delta_{\Delta}(t)=\sum_{k=-\infty}^{+\infty} \delta(t-k \Delta)
$$

${ }^{\text {st }}$ property of starred transform - sketch of proof (cont.)

By substitution of the impulse train expression into the ideal sampler output $x^{*}(t)$, we obtain

$$
x^{*}(t)=x(t) \cdot \delta_{\Delta}(t)=\frac{1}{\Delta} \sum_{k=-\infty}^{k=+\infty} x(t) e^{j k \Omega_{\mathrm{s}} t}
$$

Applying the Laplace transform

Now represent the impulse train as Fourier series

$$
\delta_{\Delta}(t)=\sum_{k=-\infty}^{k=+\infty} C_{\Delta}(k) e^{j k \Omega_{\mathrm{s}} t} \quad \Omega_{\mathrm{s}}=\frac{2 \pi}{\Delta}
$$

$$
\begin{aligned}
C_{\Delta}(k)= & \frac{1}{\Delta} \int_{-\frac{\Delta}{2}}^{+\frac{\Delta}{2}} \delta_{\Delta}(t) e^{-j k \Omega_{s} t} d t \\
& =\frac{1}{\Delta} \int_{-\frac{\Delta}{2}}^{+\frac{\Delta}{2}} \delta(t) e^{-j k \Omega_{s} t} d t=\frac{1}{\Delta}
\end{aligned}
$$

Thus

$$
\delta_{\Delta}(t)=\frac{1}{\Delta} \sum_{k=-\infty}^{k=+\infty} e^{j k \Omega_{\mathrm{s}} t}
$$

$1^{\text {st }}$ property of starred transform - sketch of proof (cont.)

Thus

$$
X^{*}(s)=\frac{1}{\Delta} \sum_{k=-\infty}^{k=+\infty} \int_{-\infty}^{+\infty}\left[x(t) e^{j k \Omega_{\mathrm{s}}}\right] e^{-s t} d t
$$

$$
\begin{aligned}
& \text { Recall the Laplace transform property } \\
& \mathcal{L}\left\{e^{k t} f(t)\right\}=F(s-k) \quad \forall k \in \mathbb{C}, \quad F(s)=\mathcal{L}\{f(t)\}
\end{aligned}
$$

Finally

$$
X^{*}(s)=\frac{1}{\Delta} \sum_{k=-\infty}^{k=+\infty} X\left(s-j k \Omega_{\mathrm{s}}\right), \quad k \in \mathbb{Z}, \quad \Omega_{\mathrm{s}}=\frac{2 \pi}{\Delta}
$$

Properties of $\mathrm{X}^{*}(\mathrm{~s})$: periodicity of the starred transform

Property 2: the starred transform is periodic in s, with period $j \Omega_{\mathbf{s}}$ $X^{*}(s)=X^{*}\left(s+j n \Omega_{\mathrm{s}}\right), \quad n \in \mathbb{N}, \Omega_{\mathrm{s}}=\frac{2 \pi}{\Delta}$

Proof.

$$
X^{*}\left(s+j n \Omega_{\mathrm{s}}\right)=\sum_{k=0}^{+\infty} x(k \Delta) e^{-k \Delta\left(s+j n \Omega_{\mathrm{s}}\right)}
$$

Since $\Omega_{\mathrm{s}} \cdot \Delta=2 \pi$, applying the Euler's relationship $e^{j \theta}=\cos \theta+j \sin \theta$

$$
e^{-j n k \Delta \Omega_{\mathrm{s}}}=e^{-j n k 2 \pi}=1 \quad \forall n, k \in \mathbb{N}
$$

thus

$$
X^{*}\left(s+j n \Omega_{\mathrm{s}}\right)=\sum_{k=0}^{+\infty} x(k \Delta) e^{-k \Delta s}=X^{*}(s)
$$

DIA@Units - 267MI-Fall 2018
TPGF - L1-p85

Properties of $\mathrm{X}^{*}(\mathrm{~s})$: poles of the starred transform (cont.)

Poles map of the starred transform

- if $X(s)$ has a pole in $s=-\sigma_{1}+j \Omega_{1}$, then the sampling operation will generate poles for $X^{*}(s)$ in $s=-\sigma_{1}+j \Omega_{1} \pm j k \Omega_{\mathrm{s}}, \quad k \in \mathbb{Z}$
- on the contrary, if $X(s)$ has a pole in $s=-\sigma_{1}+j\left(\Omega_{1}+\Omega_{\mathrm{s}}\right)$, then $X^{*}(s)$ will have a pole in $s=-\sigma_{1}+j \Omega_{1}$
- pole locations in $X(s)$ at $s=-\sigma_{1}+j\left(\Omega_{1} \pm k \Omega_{\mathrm{s}}\right), \quad k \in \mathbb{Z}$ will result in identical pole locations in $X^{*}(s)$

Properties of $\mathrm{X}^{*}(\mathrm{~s})$: poles of the starred transform

Property 3: poles of the starred transform vs poles of $\mathrm{X}(\mathrm{s})$

If $X(s)$ has a pole at $s=\hat{s}$,
then $X^{*}(s)$ must have poles at $s=\hat{s}+j k \Omega_{\mathrm{s}}, \quad k \in \mathbb{Z}$

Proof.

Rewrite the result of "Property 1"

$$
\begin{aligned}
X^{*}(s)= & \frac{1}{\Delta} \sum_{k=-\infty}^{k=+\infty} X\left(s-j k \Omega_{\mathrm{s}}\right) \\
= & \frac{1}{\Delta}\left[X(s)+X\left(s-j \Omega_{\mathrm{s}}\right)+X\left(s-2 j \Omega_{\mathrm{s}}\right)+\cdots\right. \\
& \left.+X\left(s+j \Omega_{\mathrm{s}}\right)+X\left(s+2 j \Omega_{\mathrm{s}}\right)+\cdots\right]
\end{aligned}
$$

If $X(s)$ has a pole at $s=\hat{s}$, then each term of the latter expression will contribute with a pole at $s=\hat{s}-j k \Omega_{\mathrm{s}}, \quad k \in \mathbb{Z}$.
DIA@Units - 267MI-Fall 2018 TPGF - L1-p86

Properties of $\mathrm{X}^{*}(\mathrm{~s})$: poles of the starred transform (cont.)

Primary and complementaries strips in the s-plane

- consider the s-plane of the starred transform and divide it into strips
- the primary strip is defined as the strip for which

$$
\left\{s: s \in \mathbb{C}, s=\sigma+j \Omega,-\frac{\Omega_{\mathrm{s}}}{2} \leq \Omega \leq+\frac{\Omega_{\mathrm{s}}}{2}\right\}
$$

- if the pole-zero locations for the starred transform are known in the primary strip, then the pole-zero locations for $X^{*}(s)$ in the entire s-plane are known.

Properties of $\mathrm{X}^{*}(\mathrm{~s})$: poles map of starred transform

What about zeros of starred transform?

Indeed, the zeros of $X(s)$ do not uniquely determine the location of zeros of the starred transform $X^{*}(s)$. However, the zero locations of $X^{*}(s)$ are periodic, with period $j \Omega_{\mathrm{s}}$ (Property 2).

Laplace \& Fourier transform of a causal, continuous-time signal

Consider a causal, continuous-time signal $x(t)$. The unilateral Laplace transform of such a signal is defined as

$$
\mathcal{L}\{x(t)\}=X(s)=\int_{0}^{+\infty} x(\tau) e^{-s \tau} d \tau
$$

whereas the Fourier transform is

$$
\mathcal{F}\{x(t)\}=X(\Omega)=\int_{-\infty}^{+\infty} x(t) e^{-j \Omega \tau} d \tau
$$

Exploiting the signal causality, the Fourier transform may be rewritten as

$$
\mathcal{F}\{x(t)\}=X(\Omega)=\int_{0}^{+\infty} x(t) e^{-j \Omega \tau} d \tau=\left.\mathcal{L}\{x(t)\}\right|_{s=j \Omega}
$$

provided that both transforms exist.

Suppose that the signal $x(t)$ is a so-called band-limited signal, i.e. the amplitude spectrum $|X(\Omega)|$ of the signal is non zero only if $|\Omega| \leq \Omega_{\mathrm{B}}$ (where $X(\Omega)=\mathcal{F}\{x(t)\}$).

What happens if such a signal is sampled? In particular, what if $\Omega_{\mathrm{s}}>2 \Omega_{\mathrm{B}}, \Omega_{\mathrm{s}}=2 \Omega_{\mathrm{B}}$ or $\Omega_{\mathrm{s}}<2 \Omega_{\mathrm{B}}$?

Sampling and aliasing in the frequency domain (cont.)

Sampling and aliasing in the frequency domain (cont.)

- no overlapping of spectra, so no aliasing
- to reconstruct the original signal (to isolate the original spectrum) a realizable (causal) low-pass filter is needed

Band-limited signal

In rigorous terms, a signal is called a band-limited signal if

$$
x(t)=\sum_{k=1}^{k=N} \alpha_{k} \sin \left(\Omega_{k} t+\varphi_{k}\right), \quad \Omega_{k} \leq \Omega_{\mathrm{B}} \quad \forall k
$$

or

$$
x(t)=\int_{0}^{\Omega_{\mathrm{B}}} \alpha(\Omega) \sin [\Omega t+\varphi(\Omega)] d \Omega, \quad \Omega \in\left[0, \quad \Omega_{\mathrm{B}}\right]
$$

- still no overlapping of spectra, so no aliasing
- to reconstruct the original signal (to isolate the original spectrum) an ideal (non-causal) low-pass filter is needed

- overlapping of spectra, so aliasing
- no way to reconstruct the original signal (to isolate the original spectrum)

Aliasing in the s-plane

Recall the relationship between the starred transform and the Laplace transform of the original continuous-time signal

$$
X^{*}(s)=\frac{1}{\Delta} \sum_{k=-\infty}^{k=+\infty} X\left(s-j k \Omega_{\mathrm{s}}\right), \quad \Omega_{\mathrm{s}}=\frac{2 \pi}{\Delta}, \quad X(s)=\mathcal{L}\{x(t)\}
$$

and the relationship between the starred transform and the Z-transform of the sampled sequence

$$
z=e^{s \Delta} \quad \Longleftrightarrow \quad s=\frac{1}{\Delta} \log z
$$

The aliasing effect may be analysed also in the s-plane of the starred transform, exploiting such relations.

Consider two values into the s-plane of the starred transform, such that

$$
s_{p}=s_{q}+j k \Omega_{\mathrm{s}}, \quad k \in \mathbb{Z}
$$

- The sampling relationship $z=e^{s \Delta}$ gives

$$
z_{p} \equiv z_{q} \quad \forall k \in \mathbb{Z}
$$

- Different values in the s-plane correspond to the same value in the z-plane!

Aliasing in the s-plane: $\Omega_{\mathbf{s}}>2 \Omega_{\mathrm{B}}$

- There is no bijective correspondence between s - and z-plane. Indeed, the s-plane may be divided into horizontal, Ω_{s} wide strips and the s-plane points, belonging to each of these strips, correspond one-to-one to a unique point into the z-plane.
- The effect of sampling may be explained as transforming the s-plane of the original signal's Laplace transform into a series of shifted strips (the s-plane of the starred signal), each of them with the same zero and pole locations and finally folding these strips on each other, in order to map the resulting folded s-plane into the z-plane of the sampled signal's Z-transform.

- the primary strip contains the whole set of pole location of the Laplace transform of the original continuous-time signal
- no aliasing

- some pole locations may lay on the border between primary and complementary strips
- still no aliasing

Aliasing in the s-plane: $\Omega_{\mathbf{s}}<2 \Omega_{\mathbf{B}}$

C2d with sampler \& hold

- overlapping of pole location configurations
- aliasing

Note: the alias appear as poles with time constant values lower that the original ones!

DIA@Units - 267MI-Fall 2018

C2d with sampler \& hold (cont.)

- Consider a LTI dynamic system, described by means of state equations

$$
\left\{\begin{array}{l}
\dot{x}(t)=A_{c} x(t)+B_{c} u(t) \\
y(t)=C_{c} x(t)+D_{c} u(t)
\end{array}\right.
$$

- The following expression holds

$$
x(t)=e^{A_{c}\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A_{c}(t-\tau)} B_{c} u(\tau) d \tau
$$

(from "Fundamentals of Automatic Control") where

$$
e^{A_{c} t}=\mathcal{L}^{-1}\left\{\left(s I-A_{c}\right)^{-1}\right\}=I+A_{c} t+\frac{A_{c}^{2} t^{2}}{2}+\frac{A_{c}^{3} t^{3}}{3!}+\cdots
$$

Consider the scheme

- How to obtain a discrete-time description of a linear, time-invariant, continuous-time dynamic system?
- Both state variables and outputs are sampled by means of an ideal sampler
- The inputs to the LTI systems are converted from discrete- to continuous-time using a $\mathbf{Z O H}$

C2d with sampler \& hold (cont.)

- Remember the stairwise behaviour of the output of a ZOH device

$$
u(t)=u_{k}=u(k \Delta), k \Delta \leq t<(k+1) \Delta \quad k \in \mathbb{Z}
$$

- Evaluate the state movement expression in a time interval between two successive sampling instants $k \Delta$ and $(k+1) \Delta$
$\left.x[(k+1) \Delta])=e^{A_{c} \Delta} x(k \Delta)+\left\{\int_{k \Delta}^{(k+1) \Delta} e^{A_{c}(t-\tau)} B_{c}\right) d \tau\right\} u(k \Delta)$
the input $u(t)$ is a constant signal during the considered time interval

C2d with sampler \& hold (cont.)

- Substitute $r=(k+1) \Delta-\tau$ into the integral term and rewrite the last expression,

$$
x[(k+1) \Delta])=e^{A_{c} \Delta} x(k \Delta)+\left\{\int_{0}^{\Delta} e^{A_{c} r} B_{c} d r\right\} u(k \Delta)
$$

- By comparison with the expression of the discrete-time state equations for the dynamic system considered

$$
\left\{\begin{aligned}
x[(k+1) \Delta] & =A_{d} x(k \Delta)+B_{d} u(k \Delta) \\
y(k \Delta) & =C_{d} x(k \Delta)+D_{d} u(k \Delta)
\end{aligned}\right.
$$

finally we obtain the continuous to discrete-time conversion rule, applying $\mathbf{Z O H}$ (the so-called step-invariant transform)

C2d with sampler \& hold: an example

Consider

$$
\left\{\begin{array}{l}
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
0 & -a
\end{array}\right] x+\left[\begin{array}{c}
0 \\
K
\end{array}\right] u \\
y=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x
\end{array}\right.
$$

and let's determine the discrete-time description, by sampling with ZOH and ideal samplers.

$$
\left(s I-A_{c}\right)^{-1}=\frac{1}{s(s+a)}\left[\begin{array}{cc}
s+a & 1 \\
0 & s
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{s} & \frac{1}{s(s+a)} \\
0 & \frac{1}{s+a}
\end{array}\right]
$$

Step-invariant transform

Starting from a continuous-time LTI dynamic system

$$
\left\{\begin{array}{l}
\dot{x}(t)=A_{c} x(t)+B_{c} u(t) \\
y(t)=C_{c} x(t)+D_{c} u(t)
\end{array}\right.
$$

the corresponding discrete-time description, using a ZOH for inputs and ideal samplers for state and output signals is given by

$$
\begin{array}{ll}
A_{d}=e^{A_{c} \Delta} & B_{d}=\int_{0}^{\Delta} e^{A_{c} r} B_{c} d r \\
C_{d}=C_{c} & D_{d}=D_{c}
\end{array}
$$

$$
\begin{array}{ll}
A_{d}=e^{A_{c} \Delta} & B_{d}=\int_{0}^{\Delta} e^{A_{c} r} B_{c} d r \\
C_{d}=C_{c} & D_{d}=D_{c}
\end{array}
$$

- How does one determine in practice the matrices described into the step-invariant transform?
- Are exact solutions or approximate expressions available?

Equivalent State-Space Representations

Consider the discrete-time dynamic system state-space representation:

$$
\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k)
\end{array}\right.
$$

Let $\hat{x}:=T x$, where $T \in \mathbb{R}^{n \times n}$ is a generic non-singular $n \times n$ matrix $(\operatorname{det}(T) \neq 0)$.

Then, the equivalent state-space description is given by:

$$
\left\{\begin{array}{l}
\hat{x}(k+1)=T x(k+1)=T f\left(T^{-1} \hat{x}(k), u(k), k\right)=\hat{f}(\hat{x}(k), u(k), k) \\
y(k)=g\left(T^{-1} \hat{x}(k), u(k), k\right)=\hat{g}(\hat{x}(k), u(k), k)
\end{array}\right.
$$

by suitably defining functions \hat{f} and \hat{g}.

Exact formulas for the step-invariant transform

$$
\begin{aligned}
& A_{d}=e^{A_{c} \Delta} \quad \Longleftarrow e^{A_{c} t}=\mathcal{L}^{-1}\left\{\left(s I-A_{c}\right)^{-1}\right\} \\
& B_{d}=\int_{0}^{\Delta} e^{A_{c} r} B_{c} d r=A_{c}^{-1} \cdot\left[e^{A_{c} \Delta}-I\right] \cdot B_{c}
\end{aligned}
$$

Approximate expressions

$$
\begin{aligned}
& A_{d}=e^{A_{c} \Delta} \approx I+A_{c} \Delta+\frac{A_{c}^{2} \Delta^{2}}{2}+\frac{A_{c}^{3} \Delta^{3}}{3!}+\cdots \\
& B_{d}=\int_{0}^{\Delta} e^{A_{c} r} B_{c} d r \approx\left[I+A_{c} \Delta+\frac{A_{c}^{2} \Delta^{2}}{2}+\frac{A_{c}^{3} \Delta^{3}}{3!}+\cdots\right] \cdot B_{c}
\end{aligned}
$$

Consider the discrete-time dynamic system state-space representation:

$$
\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k)
\end{array}\right.
$$

This state-space equation describes a linear system if and only if the functions $f(\cdot)$ and $g(\cdot)$ are linear with respect to their state and input vector arguments:

$$
\begin{aligned}
& \forall \alpha_{1}, \alpha_{2} \in \mathbb{R}, \forall x_{1}, x_{2} \in \mathbb{R}^{n}, \forall u_{1}, u_{2} \in \mathbb{R}^{m}: \\
& f\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, \alpha_{1} u_{1}+\alpha_{2} u_{2}, k\right)=\alpha_{1} f\left(x_{1}, u_{1}, k\right)+\alpha_{2} f\left(x_{2}, u_{2}, k\right) \\
& g\left(\alpha_{1} x_{1}+\alpha_{2} x_{2}, \alpha_{1} u_{1}+\alpha_{2} u_{2}, k\right)=\alpha_{1} g\left(x_{1}, u_{1}, k\right)+\alpha_{2} g\left(x_{2}, u_{2}, k\right)
\end{aligned}
$$

Linear Dynamic Systems: Matrix Form

Linear Dynamic Systems: Matrix Form (cont.)

Consider the state-space representation:

$$
\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k)
\end{array}\right.
$$

and suppose that the linearity assumption holds. Then:

$$
\left\{\begin{array}{l}
f_{1}(x, u, k)=a_{11}(k) x_{1}+\cdots+a_{1 n}(k) x_{n}+b_{11}(k) u_{1}+\cdots+b_{1 m}(k) u_{m} \\
\vdots \\
f_{n}(x, u, k)=a_{n 1}(k) x_{1}+\cdots+a_{n n}(k) x_{n}+b_{n 1}(k) u_{1}+\cdots+b_{n m}(k) u_{m} \\
y_{1}=c_{11}(k) x_{1}+\cdots+c_{1 n}(k) x_{n}+d_{11}(k) u_{1}+\cdots+d_{1 m}(k) u_{m} \\
\vdots \\
y_{p}=c_{p 1}(k) x_{1}+\cdots+c_{p n}(k) x_{n}+d_{p 1}(k) u_{1}+\cdots+d_{p m}(k) u_{m}
\end{array}\right.
$$

where $a_{i j}(k), b_{i j}(k), c_{i j}(k), d_{i j}(k)$ are generic functions of the discrete-time index k.

$$
\text { DIA@Units - 267MI-Fall } 2018 \quad \text { TP GF - L1-p117 }
$$

Time-Invariant Linear Dynamic Systems

In the time-invariant scenario, the matrices $A(k), B(k), C(k), D(k)$ do not depend on the time-index k, that is are constant matrices A, B, C, D :

$$
\begin{aligned}
& A:=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{n 1} & \cdots & a_{n n}
\end{array}\right] ; \quad B:=\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
\vdots & \vdots & \vdots \\
b_{n 1} & \cdots & b_{n m}
\end{array}\right] \\
& C:=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & \ddots & \vdots \\
c_{p 1} & \cdots & c_{p n}
\end{array}\right] ; \quad D:=\left[\begin{array}{ccc}
d_{11} & \cdots & d_{1 m} \\
\vdots & \vdots & \vdots \\
d_{p 1} & \cdots & d_{p m}
\end{array}\right]
\end{aligned}
$$

and thus:

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

Letting:

$$
\begin{aligned}
A(k) & :=\left[\begin{array}{ccc}
a_{11}(k) & \cdots & a_{1 n}(k) \\
\vdots & \ddots & \vdots \\
a_{n 1}(k) & \cdots & a_{n n}(k)
\end{array}\right] ; \quad B(k):=\left[\begin{array}{ccc}
b_{11}(k) & \cdots & b_{1 m}(k) \\
\vdots & \vdots & \vdots \\
b_{n 1}(k) & \cdots & b_{n m}(k)
\end{array}\right] \\
C(k) & :=\left[\begin{array}{ccc}
c_{11}(k) & \cdots & c_{1 n}(k) \\
\vdots & \ddots & \vdots \\
c_{p 1}(k) & \cdots & c_{p n}(k)
\end{array}\right] ; \quad D(k):=\left[\begin{array}{ccc}
d_{11}(k) & \cdots & d_{1 m}(k) \\
\vdots & \vdots & \vdots \\
d_{p 1}(k) & \cdots & d_{p m}(k)
\end{array}\right] \\
x(k) & :=\left[\begin{array}{c}
x_{1}(k) \\
\vdots \\
x_{n}(k)
\end{array}\right] ; \quad u(k):=\left[\begin{array}{c}
u_{1}(k) \\
\vdots \\
u_{m}(k)
\end{array}\right] ; \quad y(k):=\left[\begin{array}{c}
y_{1}(k) \\
\vdots \\
y_{p}(k)
\end{array}\right]
\end{aligned}
$$

One gets:

$$
\left\{\begin{array}{l}
x(k+1)=A(k) x(k)+B(k) u(k) \\
y(k)=C(k) x(k)+D(k) u(k)
\end{array}\right.
$$

DIA@Units - 267MI -Fall 2018

Consider a linear time-invariant dynamic system:

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

and consider a constant input sequence $u(k)=\bar{u}, k \geq 0$. Hence, one has to solve the following equation for x :

$$
x=A x+B \bar{u} \Longrightarrow(I-A) x=B \bar{u}
$$

The following two cases have to be considered:

$$
\begin{aligned}
& \text { - } \operatorname{det}(I-A) \neq 0 \\
& \text { - } \operatorname{det}(I-A)=0
\end{aligned}
$$

Time-Invariant Linear Dynamic Systems: Equilibrium States

Equivalent State-Space Representations: LTI

Consider the discrete-time linear time-invariant (LTI) dynamic system state-space representation:

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

Let $\hat{x}:=T^{-1} x$, where $T \in \mathbb{R}^{n \times n}$ is a generic non-singular $n \times n$ matrix $(\operatorname{det}(T) \neq 0)$. Then, the equivalent state-space description is given by:

$$
\left\{\begin{array}{l}
\hat{x}(k+1)=T^{-1} x(k+1)=T^{-1} A T \hat{x}(k)+T^{-1} B u(k)=\hat{A} \hat{x}(k)+\hat{B} u(k) \\
y(k)=C T \hat{x}(k)+D u(k)=\hat{C} \hat{x}(k)+D u(k)
\end{array}\right.
$$

Hence:

$$
\left\{\begin{array} { l }
{ x (k + 1) = A x (k) + B u (k) } \\
{ y (k) = C x (k) + D u (k) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\hat{x}(k+1)=\hat{A} \hat{x}(k)+\hat{B} u(k) \\
y(k)=\hat{C} \hat{x}(k)+D u(k)
\end{array}\right.\right.
$$

Linear Systems Obtained by Linearization

Basic Concept

- Linear systems are provided with numerous analytical tools that are not available for nonlinear systems
- Approximating nonlinear systems by linear ones in a
"neighbourhood" of a nominal state movement may result very useful in practice

Slope of the tangentstraight ine $=f_{x}(\bar{x})$

$$
y(x) \simeq y(\bar{x})+f_{x}(\bar{x})(x-\bar{x})
$$

- Consider the nonlinear system:

$$
\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k)
\end{array}\right.
$$

- Moreover, consider a nominal state movement $\bar{x}(k), k \geq k_{0}$ obtained by the initial state $x\left(k_{0}\right)=\bar{x}_{0}$ and the input sequence $u(k)=\bar{u}(k), k \geq k_{0}$.
- Let us perturb the initial state and the nominal input sequence, thus getting a perturbed state movement:

$$
x\left(k_{0}\right)=\bar{x}_{0}+\delta x_{0} ; u(k)=\bar{u}(k)+\delta u(k) \Longrightarrow x(k)=\bar{x}(k)+\delta x(k)
$$

- Hence:

$$
\begin{aligned}
x(k & +1)=\bar{x}(k+1)+\delta x(k+1)=f(\bar{x}(k)+\delta x(k), \bar{u}(k)+\delta u(k), k) \\
& \simeq f(\bar{x}(k), \bar{u}(k), k)+f_{x}(\bar{x}(k), \bar{u}(k)) \delta x(k)+f_{u}(\bar{x}(k), \bar{u}(k)) \delta u(k)
\end{aligned}
$$

- Since the nominal state sequence $\bar{x}(k)$ is the solution of the difference equation $\bar{x}(k+1)=f(\bar{x}(k), \bar{u}(k), k)$, it follows that

$$
\begin{aligned}
\delta x(k+1) \simeq & f_{x}(\bar{x}(k), \bar{u}(k)) \delta x(k)+f_{u}(\bar{x}(k), \bar{u}(k)) \delta u(k) \\
& =A(k) \delta x(k)+B(k) \delta u(k)
\end{aligned}
$$

$$
\text { where } A(k) \in \mathbb{R}^{n \times n}, B(k) \in \mathbb{R}^{n \times m}, k \geq k_{0} \text { are defined as: }
$$

$$
A(k)=f_{x}(\bar{x}(k), \bar{u}(k), k)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]_{x(k)=\bar{x}(k), u(k)=\bar{u}(k)}
$$

$$
B(k)=f_{u}(\bar{x}(k), \bar{u}(k), k)=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial u_{1}} & \cdots & \frac{\partial f_{1}}{\partial u_{m}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}}
\end{array}\right]_{x(k)=\bar{x}(k), u(k)=\bar{u}(k)}
$$

Linear Systems Obtained by Linearization (cont.)

$$
\begin{aligned}
& C(k)=g_{x}(\bar{x}(k), \bar{u}(k), k)=\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial g_{p}}{\partial x_{1}} & \cdots & \frac{\partial g_{p}}{\partial x_{n}}
\end{array}\right]_{x(k)=\bar{x}(k), u(k)=\bar{u}(k)} \\
& D(k)=g_{u}(\bar{x}(k), \bar{u}(k), k)=\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{1}}{\partial u_{m}} \\
\vdots & & \vdots \\
\frac{\partial g_{p}}{\partial u_{1}} & \cdots & \frac{\partial g_{p}}{\partial u_{m}}
\end{array}\right]_{x(k)=\bar{x}(k), u(k)=\bar{u}(k)}
\end{aligned}
$$

Summing up: the linear system obtained by linearization around a given nominal state movement $\bar{x}(k), k \geq k_{0}$ obtained by the initial state $x\left(k_{0}\right)=\bar{x}_{0}$ and the input sequence $u(k)=\bar{u}(k), k \geq k_{0}$ is

$$
\left\{\begin{array}{l}
\delta x(k+1)=A(k) \delta x(k)+B(k) \delta u(k) \\
\delta y(k)=C(k) \delta x(k)+D(k) \delta u(k)
\end{array}\right.
$$

- Concerning the perturbed output one has

$$
\bar{y}(k)=g(\bar{x}(k), \bar{u}(k), k) ; \quad y(k)=\bar{y}(k)+\delta y(k)
$$

Hence

$$
\begin{aligned}
y(k) & =g(x(k), u(k), k)=g(\bar{x}(k)+\delta x(k), \bar{u}(k)+\delta u(k), k) \\
& \simeq g(\bar{x}(k), \bar{u}(k), k)+g_{x}(\bar{x}(k), \bar{u}(k)) \delta x(k)+g_{u}(\bar{x}(k), \bar{u}(k)) \delta u(k)
\end{aligned}
$$

and then

$$
\begin{aligned}
\delta y(k) \simeq & g_{x}(\bar{x}(k), \bar{u}(k)) \delta x(k)+g_{u}(\bar{x}(k), \bar{u}(k)) \delta u(k) \\
& =C(k) \delta x(k)+D(k) \delta u(k)
\end{aligned}
$$

where $C(k) \in \mathbb{R}^{p \times n}, D(k) \in \mathbb{R}^{p \times m}, k \geq k_{0}$ are defined as:

Linear Systems Obtained by Linearization (cont.)

Important Special Case: Time-Invariant Systems

- Consider the nonlinear time-invariant system:

$$
\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k)) \\
y(k)=g(x(k), u(k))
\end{array}\right.
$$

- Moreover, consider an equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$.
- Let us perturb the initial state and the nominal input sequence, thus getting a perturbed state movement:

$$
x\left(k_{0}\right)=\bar{x}_{0}+\delta x_{0} ; u(k)=\bar{u}+\delta u(k) \Longrightarrow x(k)=\bar{x}+\delta x(k)
$$

- Hence:

$$
\begin{aligned}
& x(k+1)=\bar{x}+\delta x(k+1)=f(\bar{x}+\delta x(k), \bar{u}+\delta u(k)) \\
& \quad \simeq f(\bar{x}, \bar{u})+f_{x}(\bar{x}, \bar{u}) \delta x(k)+f_{u}(\bar{x}, \bar{u}) \delta u(k)
\end{aligned}
$$

Linear Systems Obtained by Linearization (cont.)

Linear Systems Obtained by Linearization (cont.)

- Since the equilibrium state \bar{x} is the constant solution of the algebraic equation $\bar{x}=f(\bar{x}, \bar{u})$, it follows that

$$
\begin{aligned}
\delta x(k+1) \simeq & f_{x}(\bar{x}, \bar{u}) \delta x(k)+f_{u}(\bar{x}, \bar{u}) \delta u(k) \\
& =A \delta x(k)+B \delta u(k)
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$ are constant matrices defined as:

$$
\begin{aligned}
& A=f_{x}(\bar{x}, \bar{u})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]_{x(k)=\bar{x}, u(k)=\bar{u}} \\
& B=f_{u}(\bar{x}, \bar{u})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial u_{1}} & \cdots & \frac{\partial f_{1}}{\partial u_{m}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}}
\end{array}\right]_{x(k)=\bar{x}, u(k)=\bar{u}}
\end{aligned}
$$

DIA@Units - 267MI-Fall 2018

Linear Systems Obtained by Linearization (cont.)

$$
\begin{aligned}
C=g_{x}(\bar{x}, \bar{u}) & =\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial g_{p}}{\partial x_{1}} & \cdots & \frac{\partial g_{p}}{\partial x_{n}}
\end{array}\right]_{x(k)=\bar{x}, u(k)=\bar{u}} \\
D & =g_{u}(\bar{x}, \bar{u})=\left[\begin{array}{ccc}
\frac{\partial g_{1}}{\partial u_{1}} & \cdots & \frac{\partial g_{1}}{\partial u_{m}} \\
\vdots & & \vdots \\
\frac{\partial g_{p}}{\partial u_{1}} & \cdots & \frac{\partial g_{p}}{\partial u_{m}}
\end{array}\right]_{x(k)=\bar{x}, u(k)=\bar{u}}
\end{aligned}
$$

Summing up: the linear time-invariant system obtained by linearization around a given equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$ is

$$
\left\{\begin{array}{l}
\delta x(k+1)=A \delta x(k)+B \delta u(k) \\
\delta y(k)=C \delta x(k)+D \delta u(k)
\end{array}\right.
$$

- Concerning the perturbed output one has

$$
\bar{y}=g(\bar{x}, \bar{u}) ; \quad y(k)=\bar{y}+\delta y(k)
$$

Hence

$$
\begin{aligned}
y(k) & =g(x(k), u(k))=g(\bar{x}+\delta x(k), \bar{u}+\delta u(k)) \\
& \simeq g(\bar{x}, \bar{u})+g_{x}(\bar{x}, \bar{u}) \delta x(k)+g_{u}(\bar{x}, \bar{u}) \delta u(k)
\end{aligned}
$$

and then

$$
\begin{aligned}
\delta y(k) \simeq & g_{x}(\bar{x}, \bar{u}) \delta x(k)+g_{u}(\bar{x}, \bar{u}) \delta u(k) \\
& =C \delta x(k)+D \delta u(k)
\end{aligned}
$$

where $C \in \mathbb{R}^{p \times n}, D \in \mathbb{R}^{p \times m}$ are constant matrices defined as:

Consider the nonlinear discrete-time system:

$$
\left\{\begin{array}{l}
x_{1}(k+1)=x_{1}(k)+\alpha\left(1-\beta x_{1}(k)\right) x_{1}(k)-\gamma x_{1}(k) x_{2}(k)+u(k) \\
x_{2}(k+1)=x_{2}(k)-\delta x_{2}(k)+\eta x_{1}(k) x_{2}(k) \\
y(k)=x_{2}(k)
\end{array}\right.
$$

Imposing the constant input sequence $\bar{u}(k)=0$ the following equilibrium states are obtained:

$$
\bar{x}_{(1)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] ; \bar{x}_{(2)}=\left[\begin{array}{c}
\frac{1}{\beta} \\
0
\end{array}\right] ; \bar{x}_{(3)}=\left[\begin{array}{c}
\frac{\delta}{\eta} \\
\frac{\alpha}{\gamma}\left(1-\frac{\beta \delta}{\eta}\right)
\end{array}\right]
$$

The general expression for matrix A of the linearized system is:

$$
\begin{aligned}
f_{x}(\bar{x}, \bar{u}) & =\left[\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right]_{\bar{x}, \bar{u}}= \\
& =\left[\begin{array}{cc}
\left(1+\alpha-2 \alpha \beta x_{1}-\gamma x_{2}\right) & -\gamma x_{1} \\
\eta x_{2} & 1-\delta+\eta x_{1}
\end{array}\right]_{\bar{x}, \bar{u}}
\end{aligned}
$$

Substituting the expressions of the specific equilibrium states one gets:

$$
\bar{x}_{(1)}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Longrightarrow \quad \bar{A}_{(1)}=\left[\begin{array}{cc}
(1+\alpha) & 0 \\
0 & 1-\delta
\end{array}\right]
$$

$$
\begin{gathered}
\bar{x}_{(2)}=\left[\begin{array}{c}
\frac{1}{\beta} \\
0
\end{array}\right] \Longrightarrow \bar{A}_{(2)}=\left[\begin{array}{cc}
(1-\alpha) & -\frac{\gamma}{\beta} \\
0 & 1-\delta+\frac{\eta}{\beta}
\end{array}\right] \\
\bar{x}_{(3)}=\left[\begin{array}{c}
\frac{\delta}{\eta} \\
\frac{\alpha}{\gamma}\left(1-\frac{\beta \delta}{\eta}\right)
\end{array}\right] \Longrightarrow \bar{A}_{(3)}=\left[\begin{array}{cc}
\left(1-\frac{\alpha \beta \delta}{\eta}\right) & -\frac{\gamma \delta}{\eta} \\
\frac{\alpha \eta}{\gamma}\left(1-\frac{\beta \delta}{\eta}\right) & 1
\end{array}\right]
\end{gathered}
$$

Linear Systems Obtained by Linearization: Example (cont.)

Finally, the other matrices B, C, and D of the linearized systems are given by (their values do not depend on the specific equilibrium states):

$$
\begin{gathered}
f_{u}(\bar{x}, \bar{u})=\left[\begin{array}{l}
\frac{\partial f_{1}}{\partial u} \\
\frac{\partial f_{2}}{\partial u}
\end{array}\right]_{\bar{x}, \bar{u}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\bar{B} \\
g_{x}(\bar{x}, \bar{u})=\left[\begin{array}{ll}
\frac{\partial g}{\partial x_{1}} & \frac{\partial g}{\partial x_{2}}
\end{array}\right]_{\bar{x}, \bar{u}}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]_{\bar{x}, \bar{u}}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]=\bar{C} \\
g_{u}(\bar{x}, \bar{u})=\left.\frac{\partial g}{\partial u}\right|_{\bar{x}, \bar{u}}=0_{\bar{x}, \bar{u}}=0=\bar{D}
\end{gathered}
$$

267MI -Fall 2018

Lecture 1

Generalities: systems and models

END

