Systems Dynamics

267MI -Fall 2018

Course ID: 267MI - Fall 2018

Thomas Parisini
Gianfranco Fenu

Lecture 3

Stability of Discrete-Time Dynamic Systems

University of Trieste
Department of Engineering and Architecture

Stability of Discrete-Time Dynamic Systems

1. Stability of state movements

Stability of State Movements
2. Stability of equilibrium states
3. Stability of linear systems

Stability of State Movements

- Consider a general abstract dynamic system characterised by the state-transition function

$$
\varphi\left(t, t_{0}, x_{0}, u(\cdot)\right)
$$

- Then, consider a generic nominal state movement for a given initial state \bar{x}_{0} and a given input function $u(\cdot)$:

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

- Now, consider the perturbed state movement generated by a perturbation of the initial state and a perturbation of the input function:

$$
\begin{aligned}
& x(0)=\bar{x}_{0}+\delta \bar{x} \\
& u(\cdot)=\bar{u}(\cdot)+\delta u(\cdot)
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& \varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)+\delta u(\cdot)\right) \\
& \text { Perturbed State Movement }
\end{aligned}
$$

The nominal state movement

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

is stable with respect to perturbations of the initial state \bar{x}_{0} if

$$
\forall \varepsilon>0, \forall t_{0}>0 \exists \delta\left(\varepsilon, t_{0}\right)>0 \text { such that if }\|\delta \bar{x}\|<\delta\left(\varepsilon, t_{0}\right)
$$

then, it follows that

$$
\left\|\varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)\right)-\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)\right\|<\varepsilon, \forall t \geq t_{0}
$$

$$
\text { DIA@Units - } 267 \mathrm{MI} \text {-Fall } 2018 \quad \text { TP GF - L3-p3 }
$$

Asymptotic Stability with Respect to Perturbations of the Initial

 State
Unstability with Respect to Perturbations of the Initial State

The nominal state movement

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

is asymptotically stable with respect to perturbations of the initial state \bar{x}_{0} if:

- it is stable, that is, if

$$
\forall \varepsilon>0, \forall t_{0}>0 \exists \delta\left(\varepsilon, t_{0}\right)>0 \text { such that if }\|\delta \bar{x}\|<\delta\left(\varepsilon, t_{0}\right)
$$

then, it follows that

$$
\left\|\varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)\right)-\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)\right\|<\varepsilon, \forall t \geq t_{0}
$$

- it is attractive, that is, $\forall t_{0}>0 \exists \eta\left(t_{0}\right)>0$ such that

$$
\lim _{t \rightarrow+\infty}\left\|\varphi\left(t, t_{0}, \bar{x}_{0}+\delta \bar{x}, \bar{u}(\cdot)\right)-\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)\right\|=0, \forall\|\delta \bar{x}\|<\eta\left(t_{0}\right)
$$

- (0): nominal state movement
- (1): perturbed state movement remaining confined in the "tube" of radius ε
- (2): perturbed state movement remaining confined in the "tube" of radius ε and
asymptotically converging

to the nominal movement
- (3): perturbed state movement crossing the
"tube" of radius ε

Unstability with Respect to Perturbations of the Input Function

The nominal state movement

$$
\bar{x}(\cdot)=\varphi\left(t, t_{0}, \bar{x}_{0}, \bar{u}(\cdot)\right)
$$

is unstable with respect to perturbations of the input function $\bar{u}(\cdot)$ if it is not stable with respect to such a kind of perturbations.

- Consider the discrete-time dynamic system

$$
\left\{\begin{array}{l}
x(k+1)=f(x(k), u(k)) \\
y(k)=g(x(k), u(k))
\end{array}\right.
$$

and the equilibrium state \bar{x} corresponding to a constant input sequence $u(k)=\bar{u}, \forall k \geq 0$, that is:

$$
\bar{x}=f(\bar{x}, \bar{u})
$$

- Now, consider a perturbation of the initial state with respect to the equilibrium state \bar{x} :

$$
\begin{aligned}
& x(0)=\bar{x}+\delta \bar{x} \\
& u(k)=\bar{u}, k \geq 0
\end{aligned} \quad \Longrightarrow \quad \begin{gathered}
x(k) \neq \bar{x}, k \geq 0 \\
\text { perturbed state movement }
\end{gathered}
$$

DIA@Units - 267MI-Fall 2018

Stability of Equilibrium States (cont.)

Stability of Equilibrium States: Geometric Interpretation

$$
\lim _{k \rightarrow \infty}\|x(k)-\bar{x}\|=0
$$

In qualitative terms:

when the initial state is perturbed, the state remains "close" to the nominal equilibrium state and tends to return asymptotically to this equilibrium state.

The equilibrium state is unstable if it is not stable.

Stability

Asymptotic Stability

- Consider the general discrete-time dynamic system

$$
x(k+1)=f(x(k), u(k), k)
$$

and consider a nominal state movement

$$
\bar{x}(k)=\varphi\left(k, k_{0}, \bar{x}_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the initial state $\bar{x}\left(k_{0}\right)=\bar{x}_{0}$.

- We analyse the stability of the nominal movement $\bar{x}(k)$ with respect to perturbations of the initial state \bar{x}_{0}, that is, we consider the perturbed state movement

$$
x(k)=\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the perturbed initial state $x_{0} \neq \bar{x}_{0}$.

- Hence, introducing the difference between the perturbed and the nominal state movement $z(k):=x(k)-\bar{x}(k)$, one gets:

$$
z(k+1)=x(k+1)-\bar{x}(k+1)=f(z(k)+\bar{x}(k), \bar{u}(k), k)-f(\bar{x}(k), \bar{u}(k), k)
$$

DIA@UniTs

$$
-267 \mathrm{MI} \text {-Fall } 2018 \quad \text { TP GF }-\quad \text { L3-p13 }
$$

- Letting:

$$
w_{\bar{x}, \bar{u}}(z(k), k):=f(z(k)+\bar{x}(k), \bar{u}(k), k)-f(\bar{x}(k), \bar{u}(k), k)
$$

it follows that the dynamics of $z(k)$ can be described by the autonomous (in general time-varying) system

$$
z(k+1)=w_{\bar{x}, \bar{u}}(z(k), k) \quad(\star)
$$

where the function $w_{\bar{x}, \bar{u}}$ is parametrised by the nominal state movement $\{\bar{x}(k)\}$ and the nominal input $\{\bar{u}(k)\}$.

- The function $w_{\bar{x}, \bar{u}}$ satisfies:

$$
w_{\bar{x}, \bar{u}}(0, k)=0, \quad \forall k \geq k_{0}
$$

Hence, the constant movement

$$
\tilde{z}(k)=0, \quad \forall k \geq k_{0}
$$

is an equilibrium state of the system (\star).
DIA@Units - 267MI-Fall 2018 TPGF - L3-p14

State Movement Stability Analysis

The stability analysis of a generic nominal state movement can always be carried out by analysing the stability of the zero-state as an equilibrium state of a suitable autonomous system.

Therefore:

> There is no loss of generality in dealing only with the stability analysis of equilibrium states

- The Lyapunov methodology for stability analysis of equilibrium states is a direct technique in that it does not require the determination of the whole perturbed state movement.
- The Lyapunov methodology originates from the following observation in physics:
if the total energy of a mechanical (for example) system is continuously dissipated, then such a system should necessarily evolving over time towards an equilibrium state
- The Lyapunov methodology generalises the above observation by associating a suitable positive scalar function to the state of the dynamic system. Such a function plays the role of "energy"

Consider a nonlinear mechanical system (continuous-time)

$$
\begin{aligned}
& k(r)=k_{0} r+k_{1} r^{3} \\
& h(\dot{r})=b \dot{r}|\dot{r}| \\
& k_{0}, k_{1}, b>0 \\
& m \ddot{r}+b \dot{r}|\dot{r}|+k_{0} r+k_{1} r^{3}=0
\end{aligned}
$$

Letting $x_{1}:=r ; x_{2}:=\dot{r}$ one gets the state equations:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-\frac{k_{0}}{m} x_{1}-\frac{k_{1}}{m} x_{1}^{3}-\frac{b}{m} x_{2}\left|x_{2}\right|
\end{array}\right.
$$

This is a free (or autonomous) system where, obviously, $\bar{x}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ is equilibrium state.

$$
\begin{aligned}
& k(r)=k_{0} r+k_{1} r^{3} \\
& h(\dot{r})=b \dot{r}|\dot{r}| \\
& k_{0}, k_{1}, b>0 \\
& m \ddot{r}+b \dot{r}|\dot{r}|+k_{0} r+k_{1} r^{3}=0
\end{aligned}
$$

The total mechanical energy is given by the sum of the kinetic energy and of the elastic potential energy:

$$
V\left(x_{1}, x_{2}\right)=\frac{1}{2} m x_{2}^{2}+\int_{0}^{x_{1}} k(\xi) d \xi=\frac{1}{2} m x_{2}^{2}+\frac{1}{2} k_{0} x_{1}^{2}+\frac{1}{4} k_{1} x_{1}^{4}
$$

Clearly the function $V\left(x_{1}, x_{2}\right)$ is a positive scalar function having the state as argument. Moreover, $V(0,0)=0$.

The Lyapunov Methodology: a Mechanical System Example (cont.)

$$
\begin{aligned}
& k(r)=k_{0} r+k_{1} r^{3} \\
& h(\dot{r})=b \dot{r}|\dot{r}| \\
& k_{0}, k_{1}, b>0 \\
& m \ddot{r}+b \dot{r}|\dot{r}|+k_{0} r+k_{1} r^{3}=0
\end{aligned}
$$

Question:

Is it possible to exploit the condition

$$
\dot{V}\left(x_{1}, x_{2}\right) \leq 0
$$

to make conclusions on the stability properties of the equilibrium state $\bar{x}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$?
Answer:

$$
\text { YES } \quad \Longrightarrow \text { Lyapunov Stability Theory }
$$

DIA@Units - 267M1-Fall $2018 \quad$ TP GF - ${ }^{\text {L3-p19 }}$

A function $V(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is positive-definite in \bar{x} if:

$$
V(\bar{x})=0 \text { and } \exists \xi>0: V(x)>0, \quad \forall x:\|x-\bar{x}\|<\xi, x \neq \bar{x}
$$

Positive-definite in 0

Positive-definite in \bar{x}

Negative-Definite and Semi-Definite Functions

A function $V(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is negative-definite (negative semi-definite) in \bar{x} if $-V(\cdot)$ is positive-definite (positive semi-definite).

Negative-definite in 0

Negative semi-definite in 0

A function $V(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is positive-semidefinite in \bar{x} if:

$$
V(\bar{x})=0 \text { and } \exists \xi>0: V(x) \geq 0, \quad \forall x:\|x-\bar{x}\|<\xi, x \neq \bar{x}
$$

Quadratic Functions

- The more widely used candidate Lyapunov functions are the quadratic functions of the form:

$$
V(x)=x^{\top} A x=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}
$$

where A is a symmetric matrix.

- Matrix A is positive-definite if the quadratic form $V(x)=x^{\top} A x$ is positive-definite in the origin.
- Analogous definitions can be given for A is positive semi-definite, negative-definite, and so on.
- In case of A not being a symmetric matrix, it can be easily shown that only its "symmetric part" provides a contribution to the quadratic form $V(x)=x^{\top} A x$.
- In this case, matrix A can be replaced by its "symmetric part" A^{S} where its elements are given by:

$$
a_{i j}^{S}=\frac{a_{i j}+a_{j i}}{2}
$$

- Recall that all eigenvalues of a symmetric matrix are real
- A matrix A is positive-definite if and only if all its eigenvalues are strictly positive:

$$
\lambda_{i}>0, \quad i=1, \ldots, n
$$

where λ_{i} denotes the i-th eigenvalue of A.

- A matrix A is positive semi-definite if and only if all its eigenvalues are non-negative:

$$
\lambda_{i} \geq 0, \quad i=1, \ldots, n
$$

- Analogous criteria hold in the other cases.

Lyapunov Theorem

Continuous-Time Case

- Given the autonomous nonlinear system $\dot{x}=f(x)$ having the equilibrium state \bar{x}.
- Given a function $V(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}$ which is positive-definite in \bar{x} and assuming that $V(\cdot)$ is continuous with continuous partial derivatives.
- Then:
- $\dot{V}(x)$ negative semi-definite in $\bar{x} \Longrightarrow \bar{x}$ is a stable equilibrium state
- $\dot{V}(x)$ negative-definite in $\bar{x} \Longrightarrow \bar{x}$ is an asymptotically stable equilibrium state
- $\dot{V}(x)$ positive-definite in $\bar{x} \Longrightarrow \bar{x}$ is an unstable equilibrium state

Continuous-Time Case

- Autonomous nonlinear system $\dot{x}=f(x)$
- Analysis of the continuous-time behaviour of $V(\cdot)$:

$$
t \rightarrow x(t) \rightarrow V(x(t))
$$

- One has:

$$
\dot{V}(x)=\frac{d V(x(t))}{d t}=\nabla V(x) \cdot \dot{x}=\nabla V(x) \cdot f(x)
$$

where

$$
\nabla V(x)=\left[\frac{\partial V(x)}{\partial x_{1}} \ldots \frac{\partial V(x)}{\partial x_{n}}\right]
$$

Discrete-Time Case

- Autonomous nonlinear system $x(k+1)=f(x(k))$
- Analysis of the continuous-time behaviour of $V(\cdot)$:

$$
k \rightarrow x(k) \rightarrow V(x(k))
$$

- One has:

$$
\Delta V(x)=V(f(x))-V(x)
$$

DIA@Units - 267MI-Fall 2018

1. The Lyapunov Theorem is of key importance since it allows to analyse the stability of equilibrium states (and hence of generic nominal state movements) without the need of determining the explicit solutions of the state equations
2. For the above reason, the Lyapunov Theorem is also called Direct Lyapunov Method
3. The Lyapunov Theorem only provides sufficient conditions for the stability of equilibrium states.
In other terms: the construction of a positive-definite function $V(\cdot)$ that does not satisfy any of the conditions on $\dot{V}(\cdot)$ (continuous-time case) or $\Delta V(\cdot)$ (discrete-time case) does not allow to make any conclusion on the stability of the equilibrium state.

Geometric Interpretation - Continuous-Time Case (cont.)

Denoting by ρ the tangent vector to the state trajectory with the direction consistent with the direction in which the state evolves over time on the trajectory T, the following three scenarios may occur:

$\dot{V}(\tilde{x})>0$

$\dot{V}(\tilde{x})<0$

$\dot{V}(\tilde{x})=0$

In the discrete-time case an analogous geometric interpretation can be made with reference to $\Delta V(\cdot)$ instead of $\dot{V}(\cdot)$

- Denote by σ the vector orthogonal to the level curve $k_{2}=V(\tilde{x})$ evaluated on the state \tilde{x}
- Given \tilde{x}, the value of $\dot{V}(\tilde{x})$ is determined
- The knowledge of $\dot{V}(\tilde{x})$ allows to determine in which direction the state movement is evolving with respect to the level curves of $V(\cdot)$

Consider a second-order nonlinear system:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right) \\
\dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right)
\end{array}\right.
$$

Lyapunov Theorem: Example 1

- Consider the second-order nonlinear system:

$$
\left\{\begin{array}{l}
x_{1}(k+1)=\frac{x_{2}(k)}{1+x_{2}^{2}(k)} \\
x_{2}(k+1)=\frac{x_{1}(k)}{1+x_{2}^{2}(k)}
\end{array}\right.
$$

- Clearly, $\bar{x}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ is an equilibrium state
- The function $V\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ is continuous and positive-definite
- It follows that:

$$
\begin{aligned}
\Delta V(x)= & V(f(x))-V(x)=\left(\frac{x_{2}}{1+x_{2}^{2}}\right)^{2}+\left(\frac{x_{1}}{1+x_{2}^{2}}\right)^{2}-x_{1}^{2}-x_{2}^{2} \\
& =\frac{-2 x_{2}^{2}-x_{2}^{4}}{\left(1+x_{2}^{2}\right)^{2}}\left(x_{1}^{2}+x_{2}^{2}\right) \quad \text { negative semi-definite }
\end{aligned}
$$

- Thus, the equilibrium state $\bar{x}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ is stable

Lyapunov Theorem: Example 2

- Consider the same second-order nonlinear system:

$$
\left\{\begin{array}{l}
x_{1}(k+1)=\frac{x_{2}(k)}{1+x_{2}^{2}(k)} \\
x_{2}(k+1)=\frac{x_{1}(k)}{1+x_{2}^{2}(k)}
\end{array}\right.
$$

- But let us choose a different candidate Lyapunov function:

$$
V(x)=\left(x_{1}^{2}+x_{2}^{2}\right)\left(1+\frac{1}{\left(1+x_{2}^{2}\right)^{2}}\right)
$$

- After some algebra, one gets:

$$
\Delta V(x)=\underbrace{\underbrace{\left\{\left(1+x_{2}^{2}\right)^{2}-\left[\left(1+x_{2}^{2}\right)^{2}+x_{1}^{2}\right]^{2}\right\}}_{=0 \text { for } x=[00]^{\top} \text { and }<0 \text { elsewhere }}}_{=0 \text { for } x=\left[\begin{array}{ll}
0 & 0]^{\top} \text { and }>0 \text { elsewhere }
\end{array} \frac{x_{1}^{2}+x_{2}^{2}}{\left[\left(1+x_{2}^{2}\right)^{2}+x_{1}^{2}\right]^{2}}\right.}
$$

- Thus, the equilibrium state $\bar{x}=\left[\begin{array}{ll}0 & 0\end{array}\right]^{\top}$ is asymptotically stable
- These two examples show that the Lyapunov Method provides sufficient but not necessary stability conditions

Stability of Linear Discrete-Time Systems

- Consider the general discrete-time linear dynamic system

$$
x(k+1)=A(k) x(k)+B(k) u(k)
$$

and consider a nominal state movement

$$
\bar{x}(k)=\varphi\left(k, k_{0}, \bar{x}_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the initial state $\bar{x}\left(k_{0}\right)=\bar{x}_{0}$.

- We analyse the stability of the nominal movement $\bar{x}(k)$ with respect to perturbations of the initial state \bar{x}_{0}, that is, we consider the perturbed state movement

$$
x(k)=\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}, \ldots, u(k-1)\right\}\right)\right.
$$

starting from the perturbed initial state $x_{0} \neq \bar{x}_{0}$.

Stability of Linear Discrete-Time Systems (cont.)

- Hence, introducing the difference between the perturbed and the nominal state movement $z(k):=x(k)-\bar{x}(k)$, one gets:

$$
\begin{aligned}
& z(k+1)=x(k+1)-\bar{x}(k+1) \\
& =A(k)[z(k)+\bar{x}(k)]+B(k) \bar{u}(k)-A(k) \bar{x}(k)-B(k) \bar{u}(k) \\
& =A(k) z(k)
\end{aligned}
$$

- It follows that the dynamics of $z(k)$ can be described by the autonomous (in general time-varying) system

$$
z(k+1)=A(k) z(k) \quad(\star)
$$

- Hence, the constant movement

$$
\tilde{z}(k)=0, \quad \forall k \geq k_{0}
$$

is an equilibrium state of the system (\star).

Summing up:

For linear systems the dynamics of the difference between the perturbed and the nominal state movement $z(k)=x(k)-\bar{x}(k)$ satisfies:

$$
z(k+1)=A(k) z(k)
$$

and:

- The dynamics of $z(k)$ does not depend on the specific initial state \bar{x}_{0} but on the magnitude of the initial state perturbation $z\left(k_{0}\right)=x(k)-\bar{x}_{0}$
- All state movements have the same stability properties or, in other terms, stability is not a property of a specific nominal state movement but, instead, is a global property of the linear dynamic system

Stability of Linear Systems: Lyapunov Method (cont.)

Sketch of the proof

($\Longleftarrow)$ (sufficiency)

- Consider two symmetric positive-definite matrices
$P, Q \in \mathbb{R}^{n \times n}$ that satisfy the Lyapunov Equation

$$
A^{\top} P A-P=-Q
$$

- To show that the system $x(k+1)=A x(k)$ is asymptotically stable, we let

$$
V(x)=x^{\top} P x
$$

- It follows that:

$$
\begin{aligned}
\Delta V(x) & =(A x)^{\top} P A x-x^{\top} P x=x^{\top} A^{\top} P A x-x^{\top} P x \\
& =x^{\top}\left(A^{\top} P A-P\right) x=-x^{\top} Q x<0, \forall x \neq 0
\end{aligned}
$$

- Hence $\Delta V(x)$ is negative-definite which implies that the origin is an asymptotically stable equilibrium state of the system $x(k+1)=A x(k)$.
- Given the autonomous linear time-invariant discrete-time dynamic system

$$
x(k+1)=A x(k) \quad(\star)
$$

- The system (\star) is asymptotically stable if and only if $\forall Q \in \mathbb{R}^{n \times n}$ symmetric and positive-definite there exists a unique symmetric and positive-definite $P \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A^{\top} P A-P=-Q \tag{०}
\end{equation*}
$$

- The matrix equation ($)$ is called Discrete-Time Lyapunov Equation.

Remark: In the linear case, the Lyapunov method provides a necessary and sufficient condition for asymptotic stability

$$
\text { DIA@Units - 267MI-Fall } 2018 \quad \text { TP GF - L3-p37 }
$$

Stability of Linear Systems: Lyapunov Method (cont.)

(\Longrightarrow) (necessity)

- Suppose that the system $x(k+1)=A x(k)$ is asymptotically stable
- Consider a symmetric positive-definite matrix $Q \in \mathbb{R}^{n \times n}$ and let us show that a symmetric positive-definite matrix $P \in \mathbb{R}^{n \times n}$ satisfying the Lyapunov Equation

$$
A^{\top} P A-P=-Q
$$

does exist

- Let:

$$
P:=\sum_{i=0}^{+\infty}\left(A^{\top}\right)^{i} Q A^{i}
$$

It can be shown that such a matrix does exist (the series converges) and that it is symmetric positive-definite owing to the asymptotic stability assumption

(\Longrightarrow) (necessity)

- Hence, we just need to show that matrix P is a solution of the Lyapunov Equation:

$$
\begin{aligned}
& A^{\top}\left(\sum_{i=0}^{+\infty}\left(A^{\top}\right)^{i} Q A^{i}\right) A-\sum_{i=0}^{+\infty}\left(A^{\top}\right)^{i} Q A^{i} \\
& \quad=\sum_{i=0}^{+\infty}\left(A^{\top}\right)^{i+1} Q A^{i+1}-\sum_{i=0}^{+\infty}\left(A^{\top}\right)^{i} Q A^{i} \\
& =\left[\left(A^{\top}\right) Q A+\left(A^{\top}\right)^{2} Q A^{2}+\ldots\right]^{-}\left[Q+\left(A^{\top}\right) Q A+\ldots\right]=-Q
\end{aligned}
$$

which concludes the proof.

Stability of Linear Systems: Lyapunov Stability Test (cont.)

Remarks

- If the Lyapunov Stability Test returns a positive result, then the quadratic form:

$$
V(x)=x^{\top} P x
$$

is a Lyapunov function for the system $x(k+1)=A x(k)$. Hence the Lyapunov Stability Test provides a systematic procedure to construct Lyapunov functions - in the linear case.

- For a given symmetric matrix $Q \in \mathbb{R}^{n \times n}$, the Lyapunov Equation

$$
A^{\top} P A-P=-Q \quad(\circ)
$$

turns out to be an algebraic linear system consisting of $n(n+1) / 2$ linear independent equations of the form

$$
\sum_{j=1}^{n} a_{j i} p_{j k} a_{j k}+p_{i k}=-q_{i k}
$$

involving $n(n+1) / 2$ unknowns (exploiting the symmetry of P for which $\left.p_{i j}=p_{j i}\right)$.

Lyapunov Stability Test (linear time-invariant systems)

Given the linear system

$$
x(k+1)=A x(k)
$$

- Choose a symmetric and positive-definite $Q \in \mathbb{R}^{n \times n}$ and plug it into the Lyapunov Equation

$$
\begin{equation*}
A^{\top} P A-P=-Q \tag{०}
\end{equation*}
$$

- Determine a solution $\bar{P} \in \mathbb{R}^{n \times n}$ of the Lyapunov Equation (०)
- The system (\star) is asymptotically stable if and only if the matrix \bar{P} is positive-definite
DIA@Units - 267MI-Fall $2018 \quad$ TPGF - L3-p41

Stability of Linear Systems via Analysis of the Free State Movement

- Given the linear time-invariant discrete-time dynamic system

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

- In equilibrium conditions:

$$
\begin{aligned}
x(0) & =\bar{x} \\
u(k) & =\bar{u}, k \geq 0 \\
& \Longrightarrow x(k)=A^{k} \bar{x}+\sum_{i=0}^{k-1} A^{k-i-1} B \bar{u}=\bar{x}, \forall k \geq 0
\end{aligned}
$$

- Perturbing the equilibrium conditions:

$$
\begin{aligned}
& \begin{array}{l}
x(0)=\bar{x}+\delta \bar{x} \\
u(k)=\bar{u}, k \geq 0
\end{array} \quad \Longrightarrow \quad \begin{array}{c}
x(k) \neq \bar{x}, k \geq 0 \\
\text { perturbed state movement }
\end{array} \\
& \Longrightarrow x(k)=A^{k}(\bar{x}+\delta \bar{x})+\sum_{i=0}^{k-1} A^{k-i-1} B \bar{u} \\
&= \bar{x}+A^{k} \delta \bar{x}
\end{aligned}
$$

Hence:

$$
\delta x(k)=A^{k} \delta \bar{x}
$$

- Also, recall that:

$$
x_{l}(k)=A^{k} x(0)
$$

Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Stability and A^{k}

- The stability properties do not depend on the specific value taken on by the equilibrium state \bar{x}
- Hence, the stability properties are a structural property of the linear dynamic system as a whole
- The stability properties depend on the time-behaviour of the $n \times n$ elements of the matrix A^{k} :
- Stability \Longleftrightarrow all elements of A^{k} are bounded $\forall k \geq 0$
- Asymptotic stability $\Longleftrightarrow \lim _{k \rightarrow \infty} A^{k}=0$
- Instability \Longleftrightarrow at least one element of A^{k} diverges

Stability of Linear Systems via Analysis of the Free State Movement (cont.)

Recall that (Part 2):

- $x(k+1)=A x(k), x(0)=x_{0} \Longrightarrow x(k)=A^{k} x_{0}$
- $T \in \mathbb{R}^{n \times n}, \operatorname{det}(T) \neq 0 \Longrightarrow x=T \hat{x}, \quad \hat{x}=T^{-1} x$ Hence $\hat{x}(k+1)=T^{-1} A x(k)=T^{-1} A T \hat{x}(k), \hat{x}_{0}=T^{-1} x_{0}$ which yields

$$
\hat{x}(k)=\left(T^{-1} A T\right)^{k} T^{-1} x_{0}
$$

- One lets $J:=T^{-1} A T$ and considers the transformation such that J takes on the Jordan Canonical Form thus obtaining:

$$
x(k)=T J^{k} T^{-1} x_{0}
$$

- For the stability analysis, the boundedness of the free-state movement has to be ascertained. Since matrix T does not depend on k, it suffices to analyse the boundedness of the elements of the matrix

Specifically:

$$
x(k)=T J^{k} T^{-1} x_{0}=T\left[\begin{array}{cccc}
J_{0}^{k} & \cdots & \cdots & 0 \\
& J_{1}{ }^{k} & & \\
& & \ddots & \\
0 & \cdots & \cdots & J_{s}{ }^{k}
\end{array}\right] T^{-1} x_{0}
$$

where:

$$
J_{0}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{k}
\end{array}\right] \quad \Longrightarrow \quad J_{0}{ }^{k}=\left[\begin{array}{ccc}
\lambda_{1}{ }^{k} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & \lambda_{r}{ }^{k}
\end{array}\right]
$$

Stability of Linear Systems via Analysis of the Free State Movement (cont.)
and

$$
J_{i}=\left[\begin{array}{ccccc}
\lambda_{k+i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{k+i} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \ddots & 1 \\
0 & 0 & \cdots & \cdots & \lambda_{k+i}
\end{array}\right]
$$

Thus:

$$
\begin{aligned}
& J_{i}^{k}=\left(\lambda_{r+i} I_{i}+N_{i}\right)^{k} \\
& =\lambda_{r+i} I+k \lambda_{r+i}^{k-1} N_{i}+\frac{k(k-1)}{2!} \lambda_{r+i}^{k-2} N_{i}^{2}+\cdots+k \lambda_{r+i} N_{i}^{k-1}+N_{i}^{k}
\end{aligned}
$$

eventually getting to discrete-time response modes of the form

$$
\lambda^{k},\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}
$$

Stability \& Qualitative Behaviour of Response Modes

- $\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}$ with $\lambda \in \mathbb{R}$, multiplicity >1

Stability \& Qualitative Behaviour of Response Modes

- $\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}$ with $\lambda \in \mathbb{R}$, multiplicity $=1$
As. Stable Stable Unstable

TP GF - L3-p49

Stability \& Qualitative Behaviour of Response Modes

$$
\cdot\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}} \text { with } \lambda \in \mathbb{C} \text {, multiplicity }=1
$$

As. Stable StableUnstable

- $\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}$ with $\lambda \in \mathbb{C}$, multiplicity >1

Asymptotically Stable

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right] \\
A_{1}=\lambda_{2}=\frac{1}{2} \\
A^{k}=\left[\begin{array}{cc}
(1 / 2)^{k} & 0 \\
0 & (1 / 2)^{k}
\end{array}\right] \quad \begin{array}{r}
x_{1}(k+1), z^{-1} \\
x_{1}(k) \\
x_{2}(k+1)
\end{array} \quad \begin{array}{c}
\text { Response modes for } \\
x_{1}(k) \text { and } x_{2}(k)
\end{array} \\
\hline 1 / 2
\end{gathered}
$$

Stability \& Behaviour of Response Modes: Example 2

Stability \& Behaviour of Response Modes: Example 3

Asymptotically Stable

Stable (not asymptotically)

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\lambda_{1}=\lambda_{2}=1 \\
A^{k}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

Complete Stability Criterion Based on Eigenvalues of A

Unstable

Stability by Analysing the Characteristic Polynomial

- The previous complete stability criterion requires checking whether the eigenvalues of matrix A belong to the unit circle in the complex plane
- A number of techniques exist to perform the check above without explicitly calculating the eigenvalues of matrix A
- Considering the characteristic polynomial

$$
p_{A}(z)=\operatorname{det}(z I-A)=\varphi_{0} z^{n}+\varphi_{1} z^{n-1}+\cdots+\varphi_{n-1} z+\varphi_{n}
$$

a suitable bi-linear transformation allows to reduce the problem of checking whether the roots of polynomial $p_{A}(z)$ belong to the unit circle in the complex plane to an equivalent problem of checking whether the roots of a suitable polynomial $q_{a}(w)$ belong to the complex left half-plane

- This equivalent problem can then be solved by using the Routh-Hurwitz technique (see the course Fundamentals of Automatic Control)

Stability Criterion

Given the system $x(k+1)=A x(k)$ and denoting by
$\lambda_{i}, i=1, \ldots n$ the eigenvalues of matrix A.

- $\left|\lambda_{i}\right|<1, \forall i=1, \ldots n \quad \Longleftrightarrow \quad$ The system is as. stable
- $\exists i, 1 \leq i \leq n:\left|\lambda_{i}\right|>1 \Longrightarrow$ The system is unstable
$\left.\begin{array}{l}\left|\lambda_{i}\right| \leq 1, \forall i=1, \ldots n \\ \exists i, 1 \leq i \leq n:\left|\lambda_{i}\right|=1\end{array}\right\} \Longrightarrow$ The system is not as. stable
- $\lambda_{i}:\left|\lambda_{i}\right|=1$ have algebraic multiplicity $=1$, then the system is stable (not as.)
- $\lambda_{i}:\left|\lambda_{i}\right|=1$ have algebraic multiplicity >1 and all Jordan sub-blocks are of dimension $=1$, then the system is stable (not as.)
- $\lambda_{i}:\left|\lambda_{i}\right|=1$ have algebraic multiplicity >1 and at least one Jordan sub-block has dimension >1, then the system is unstable

$$
z=\frac{w+1}{w-1}, z, w \in \mathbb{C} \quad \begin{aligned}
& |z|<1 \Longleftrightarrow \operatorname{Re}(w)<0 \\
& |z|=1 \Longleftrightarrow \operatorname{Re}(w)=0 \\
& |z|>1 \Longleftrightarrow \operatorname{Re}(w)>0
\end{aligned}
$$

Use of the Bi-linear Transformation (cont.)

Use of the Bi-linear Transformation. Example 1

Substitute

$$
z=\frac{w+1}{w-1}, z, w \in \mathbb{C}
$$

into

$$
p_{A}(z)=\varphi_{0} z^{n}+\varphi_{1} z^{n-1}+\cdots+\varphi_{n-1} z+\varphi_{n}
$$

thus obtaining

$$
\begin{aligned}
& q_{A}(w)=(w-1)^{n}\left[\varphi_{0} \frac{(w+1)^{n}}{(w-1)^{n}}+\varphi_{1} \frac{(w+1)^{n-1}}{(w-1)^{n-1}}+\cdots\right. \\
&\left.+\varphi_{n-1} \frac{(w+1)^{n-1}}{(w-1)^{n-1}}+\varphi_{n}\right]
\end{aligned}
$$

and hence one gets

$$
q_{A}(w)=q_{0} w^{n}+q_{1} w^{n-1}+\cdots+q_{n-1} w+q_{n}
$$

with suitable coefficients $q_{0}, q_{1}, \ldots, q_{n}$.

Use of the Bi-linear Transformation. Example 2

Given

$$
p_{A}(z)=z^{2}+a z+b
$$

with $a, b \in R$. Thus, one gets:

$$
q_{A}(w)=(w-1)^{2}\left[\frac{(w+1)^{2}}{(w-1)^{2}}+a \frac{(w+1)}{(w-1)}+b\right]
$$

and after some easy algebra

$$
q_{A}(w)=(1+b+a) w^{2}+2(1-b) w-a+1+b
$$

$\left.\begin{array}{l}2 \\ 1 \\ 0\end{array} \left\lvert\, \begin{array}{l}(1+b+a) \\ 2(1-b) \\ (1+b-a)\end{array}\right.\right)\left(\begin{array}{l}1+b-a) \\ 2(1-b)>0 \\ 1+b-a>0\end{array}\right.$
@units - 267 ML - Fall 2018

Given

$$
p_{A}(z)=z^{3}+2 z^{2}+z+1
$$

one gets

$$
q_{A}(w)=(w-1)^{3}\left[\frac{(w+1)^{3}}{(w-1)^{3}}+2 \frac{(w+1)^{2}}{(w-1)^{2}}+\frac{w+1}{w-1}+1\right]
$$

and after some algebra

$$
q_{A}(w)=5 w^{3}+w^{2}+3 w-1
$$

3	5	3
2	1	-1
1	8	
0	-1	

Hence, there is one root of $q_{A}(w)$ on the complex right-half plane which in turn implies that one of the roots of $p_{A}(z)$ lies outside the unit circle.

The stability condition has a nice geometric interpretation:

$$
\left\{\begin{array}{l}
b>-a-1 \\
b<1 \\
b>a-1
\end{array}\right.
$$

Stability of Equilibrium States Through the Linearised System -Time-Invariant Systems

Recall from Part 1

- Consider the nonlinear time-invariant system:

$$
x(k+1)=f(x(k), u(k))
$$

- Moreover, consider an equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$.
- Let us perturb the initial state and the nominal input sequence, thus getting a perturbed state movement:

$$
x\left(k_{0}\right)=\bar{x}_{0}+\delta x_{0} ; u(k)=\bar{u}+\delta u(k) \Longrightarrow x(k)=\bar{x}+\delta x(k)
$$

- Hence:

$$
\begin{aligned}
x(k & +1)=\bar{x}+\delta x(k+1)=f(\bar{x}+\delta x(k), \bar{u}+\delta u(k)) \\
& \simeq f(\bar{x}, \bar{u})+f_{x}(\bar{x}, \bar{u}) \delta x(k)+f_{u}(\bar{x}, \bar{u}) \delta u(k)
\end{aligned}
$$

DIA@Units - 267MI-Fall 2018

Stability of Equilibrium States Through the Linearised System -Time-Invariant Systems (cont.)

- Since the equilibrium state \bar{x} is the constant solution of the algebraic equation $\bar{x}=f(\bar{x}, \bar{u})$, it follows that

$$
\delta x(k+1) \simeq A \delta x(k)+B \delta u(k)
$$

where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$ are constant matrices defined as:

$$
A=f_{x}(\bar{x}, \bar{u})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right]_{x(k)=\bar{x}, u(k)=\bar{u}}
$$

$$
B=f_{u}(\bar{x}, \bar{u})=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial u_{1}} & \cdots & \frac{\partial f_{1}}{\partial u_{m}} \\
\vdots & & \vdots \\
\frac{\partial f_{n}}{\partial u_{1}} & \cdots & \frac{\partial f_{n}}{\partial u_{m}}
\end{array}\right]
$$

Stability of Equilibrium States Through the Linearised System -Time-Invariant Systems (cont.)

Summing up:

The linear time-invariant system obtained by linearization around a given equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$ is

$$
\delta x(k+1)=A \delta x(k)+B \delta u(k)
$$

The Reduced Lyapunov Method for Discrete-Time Systems

- Consider the nonlinear time-invariant system:

$$
x(k+1)=f(x(k), u(k))
$$

- Moreover, consider an equilibrium state \bar{x} obtained by the constant input sequence $u(k)=\bar{u}, k \geq k_{0}$.
- Consider the free linear time-invariant system obtained by linearization around the equilibrium state \bar{x} (the effect of the input is not considered in the stability of the equilibrium) and denote by $\lambda_{i}, i=1, \ldots n$ the eigenvalues of matrix A :

$$
\delta x(k+1)=A \delta x(k)
$$

- $\left|\lambda_{i}\right|<1, \forall i=1, \ldots n \quad \bar{x}$ is an asymptotically stable equilibrium state
- $\exists i, 1 \leq i \leq n:\left|\lambda_{i}\right|>1 \quad \Longrightarrow \quad \bar{x}$ is an unstable equilibrium state
- In all other situations, no conclusions on the stability of the equilibrium state can be drawn from the analysis of the linearised system.

267MI -Fall 2018

Lecture 3

Stability of Discrete-Time Dynamic Systems

END

