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A (very) short glimpse on probabil-
ity theory, random variables and
discrete-time stochastic processes



- Random experiment: analysis of characteristic elements of
phenomena yielding unpredictable results.

+ Results space: we denote by S the set of all possible results of
the experiment. Result: s € S'.

- Events: sets of results of specific interest. Hence an event is a
subset of S'.

Random variable

Given a random experiment, a random variable (r.v.) is a variable
v(s) taking values depending on the result s € S of a random
experiment via a function ¢(-).
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Probability distribution & density functions

Probability distribution function
Provides information on the random variable v and it is defined as

Fy(g)=Pw<q)
According to the definition P (v € [a, b]) = F,(b) — Fy,(a)

Probability density function

dF,
P (v e la, b])
1 fv([I)
Fy(q)

P(vea b])]

0 a b ! av b a
Clearly P (v € [a, b]) is the area “under” the diagram of f(¢) in the
interval [a, b).
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Functions of random variables

+ Expected value (average value, average)

+oo
E(v) = / q f»(q)dgq

+ Variance .
var(e) = [ g =B fula)da
» Standard deviation
o(v) = y/var(v)

Tchebicev inequality
P(jv—B@)| > o) < Y20

g Ve >0

€
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Random variables (cont.)

Sum of random variables
Caution! Given two random variables v, (s), v2(s):

E(v) = E(v1) + E(v2)

v(s) = vi(s) + va(s) var(v) # var(vi) + var(vz)

Important specific case: Gaussian random variable
A rv. v is Gaussian if:

1 _ (a=m)?

fv(Q) = 271'0'6 2 fo(q)
b= EW
0 q
o = var(v)
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Vector random variable

« For example, given two random variables v;, v, we can build a
random vector in the obvious way:

- Consequently, expectation and variance of a random vector are

E(v1)
E(v) =
E(v2)
var(v) = E {[U —E@)][v - E(U)]T}

Please note: var(v) is a matrix!
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Vector random variable (cont.)

+ In two dimensions
vo= w1 =E(), p =E)

» Therefore

var(v) = E {[U —E@)][v - E(U)}T}

{lj};_glhm—m vz—uz}}

|
=

. (v — m)? (v1 — ) (v2 — p2) ]
(v2 — p2)(v1 — 1) (v2 — p2)?
= =2 variance matrix
2
3
covariance \—j
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Vector random variable (cont.)

« The matrix ¥ = var(v) in general is symmetric and positive

semidefinite
T2
< T2
T .\.\
X1 = <
'¥x, ¥>0
'Yz, ¥>0
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Correlation and independence

« Two random variables v, v, are uncorrelated if
E{[vi — E(v1)] [v2 — E(v2)]} =0
that is E (v1v2) = E(v1) - E(v2)
« Two random variables vy, v, are independent if
for, v, (@, ) = fo, (a) - fo, (b)

Independence vs correlation
rv. independent s r.v. uncorrelated
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Stochastic processes

A stochastic process is a random phenomenon evolving over time
according to a probabilistic law.

In practice: a two-variable function v(¢,s) , where ¢ is the time
and s is the instance of the random experiment associated with
the stochastic process.

Hence
- givent = ¢, v (¢, s) is a rv. with a certain probability distribution

- given s, v (£, 5) is a function of time that takes on the name of
realization of the stochastic process
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Stochastic processes (cont.)

In practice a stochastic process is a set of infinite r.v. ordered with
respect to time.
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Stochastic processes (cont.)

In practice a stochastic process is a set of infinite r.v. ordered with
respect to time.

U(t, 51) 2

’U(t7 52) sk

’U(t, §3) j,
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Description of a stochastic process

 From a formal point of view, the full description of a stochastic
process entails the knowledge of the probability distribution
function:

Pla(ty) <wi, 2(t2) <2y -0, 2(tr) < 2
for every arbitrary value of

k> LTy, Ty o0y Tk, t17 t2a "'7tk:

« Such description is clearly not practical. Therefore, we assume
that the stochastic process is fully described by the first- and
second-order moments.
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Description of a stochastic process (cont.)

« First-order moment (expected value or average):

function of ¢
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Description of a stochastic process (cont.)

- Second-order moment (covariance function):

function of ¢,

function of ¢,

v (t1, t2) =E vy (s)  — m(t) ] v, (s)  — m(t)
function of s function of s
for given ¢, for given t,

« Correlation function:

E [vs,(5) - vi, ()]
Coincides with covariance function when m(t) = 0 Vt.
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Description of a stochastic process (cont.)

Therefore:

For our purposes, we assume that a stochastic pro-
cess is fully described by first- and second-order
moments: m(t), v (t1, t2).

Two stochastic processes with the same
first- and second-order moments are
undistinguishable by hypothesis.
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Stationary stochastic processes

Stationary stochastic process
A stochastic process is stationary (in weak sense) if:

* m(t) = m = const

cq(t, ) =(1), T=t—t

This assumption greatly simplifies several derivations and,
especially, implies the possibility of analyzing the probability
distribution without caring about the specific time-instant.
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Gaussian stochastic processes

Gaussian processes

irrespective of the choice of the time-instants ¢, ., ..., ty the
random variables vy, (s), v, (8), - .., vy (s) are jointly Gaussian,
that is:

F o vns ooy o) =aexp { =3 (0= )57 (0 1)

where

v=[v, va, ..., on]" w=E() Y = var(v)
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Stationary stochastic process: normalized covariance

- Consider a stationary stochastic process for which:
« m(t) =m = const
c At ) =v(r), T=ta—t

Clearly, the variance of the process is v(0) and we define the
normalized covariance:
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White stochastic processes

White process
A stochastic process (t) is defined white if

cEle(t)] =0

A\ 7=0
’ V(T){ 0, 740

and we denote: & ~ WN (0, \?)
In a white process what happens at different time-instants is

unrelated, thus the knowledge of ¢(¢) does not help in gaining
knowledge about (¢ + 1).
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