Systems Dynamics

Course ID: 267MI - Fall 2018

Thomas Parisini Gianfranco Fenu

University of Trieste
Department of Engineering and Architecture

Random variables

- **Random experiment**: analysis of characteristic elements of phenomena yielding unpredictable results.
- Results space: we denote by S the set of all possible results of the experiment. Result: $s \in S$.
- **Events**: sets of results of specific interest. Hence an event is a subset of ${\cal S}$.

Random variable

Given a random experiment, a **random variable** (r.v.) is a variable v(s) taking values depending on the result $s \in S$ of a random experiment via a function $\varphi(\cdot)$.

267MI -Fall 2018

Lecture 5

A (very) short glimpse on probability theory, random variables and discrete-time stochastic processes

Probability distribution & density functions

Probability distribution function

Provides information on the random variable v and it is defined as

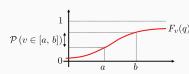
$$F_v(q) = \mathcal{P}\left(v \le q\right)$$

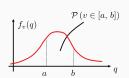
According to the definition

$$\mathcal{P}\left(v \in [a, b]\right) = F_v(b) - F_v(a)$$

Probability density function

$$f_v(q) = \frac{d F_v}{d q}$$





TP GF - 15-n2

Clearly $\mathcal{P}\left(v\in[a,\,b]\right)$ is the area "under" the diagram of f(q) in the interval $[a,\,b]$.

Functions of random variables

• Expected value (average value, average)

$$E(v) = \int_{-\infty}^{+\infty} q f_v(q) dq$$

Variance

$$var(v) = \int_{-\infty}^{+\infty} [q - E(v)]^2 f_v(q) dq$$

Standard deviation

$$\sigma(v) = \sqrt{\operatorname{var}(v)}$$

Tchebicev inequality

$$\mathcal{P}(|v - E(v)| > \epsilon) \le \frac{\text{var}(v)}{\epsilon^2} \qquad \forall \epsilon > 0$$

DIA@UniTS - 267MI -Fall 2018

TP GF - L5-p3

Vector random variable

• For example, given two random variables v_1 , v_2 we can build a **random vector** in the obvious way:

$$v = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right]$$

· Consequently, expectation and variance of a random vector are

$$\mathbf{E}(v) = \begin{bmatrix} \mathbf{E}(v_1) \\ \mathbf{E}(v_2) \end{bmatrix}$$

$$\operatorname{var}(v) = \operatorname{E}\left\{ \left[v - \operatorname{E}(v) \right] \left[v - \operatorname{E}(v) \right]^{\mathrm{T}} \right\}$$

Please note: var(v) is a matrix!

Random variables (cont.)

Sum of random variables

Caution! Given two random variables $v_1(s)$, $v_2(s)$:

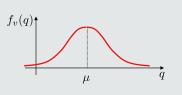
$$v(s) = v_1(s) + v_2(s) \implies \begin{aligned} \mathbf{E}(v) &= \mathbf{E}(v_1) + \mathbf{E}(v_2) \\ \mathbf{var}(v) &\neq \mathbf{var}(v_1) + \mathbf{var}(v_2) \end{aligned}$$

Important specific case: Gaussian random variable

A r.v. v is Gaussian if:

$$f_v(q) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(q-\mu)^2}{2\sigma^2}}$$

$$\sigma^2 = \operatorname{var}(v)$$



TP GF - L5-p4

Vector random variable (cont.)

· In two dimensions

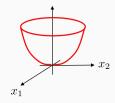
$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 $\mu_1 = \mathrm{E}(v_1) \;, \quad \mu_2 = \mathrm{E}(v_2)$

Therefore

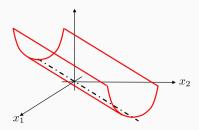
$$\begin{aligned} \operatorname{var}(v) &= \operatorname{E}\left\{ \left[v - \operatorname{E}(v)\right] \left[v - \operatorname{E}(v)\right]^{\operatorname{T}} \right\} \\ &= \operatorname{E}\left\{ \left[\begin{array}{c} v_1 - \mu_1 \\ v_2 - \mu_2 \end{array}\right] \left[\begin{array}{c} v_1 - \mu_1 & v_2 - \mu_2 \end{array}\right] \right\} \\ &= \operatorname{E}\left[\begin{array}{c} (v_1 - \mu_1)^2 & (v_1 - \mu_1)(v_2 - \mu_2) \\ (v_2 - \mu_2)(v_1 - \mu_1) & (v_2 - \mu_2)^2 \end{array}\right] \\ &= \left[\begin{array}{c} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{array}\right] = \Sigma \qquad \text{variance matrix} \end{aligned}$$

Vector random variable (cont.)

• The matrix $\Sigma = \mathrm{var}(v)$ in general is symmetric and positive semidefinite



$$x^T \Sigma x$$
, $\Sigma > 0$



$$x^T \Sigma x \,, \quad \Sigma \ge 0$$

DIA@UniTS - 267MI -Fall 2018

TP GF - L5-p7

Stochastic processes

A **stochastic process** is a random phenomenon evolving over time according to a probabilistic law.

In practice: a two-variable function v(t,s) , where t is the time and s is the instance of the random experiment associated with the stochastic process.

Hence

- given $t = \bar{t}$, $v\left(\bar{t},s\right)$ is a r.v. with a certain probability distribution
- given \bar{s} , $v\left(t,\bar{s}\right)$ is a function of time that takes on the name of realization of the stochastic process

Correlation and independence

• Two random variables v_1 , v_2 are uncorrelated if

$$E\{[v_1 - E(v_1)][v_2 - E(v_2)]\} = 0$$

that is $E(v_1 v_2) = E(v_1) \cdot E(v_2)$

• Two random variables v_1 , v_2 are independent if

$$f_{v_1, v_2}(a, b) = f_{v_1}(a) \cdot f_{v_2}(b)$$

Independence vs correlation

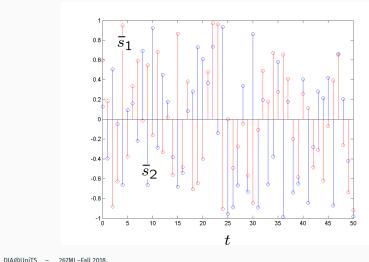
r.v. independent ------ r.v. uncorrelated

DIA@UniTS - 267MI -Fall 2018

TP GF - L5-p8

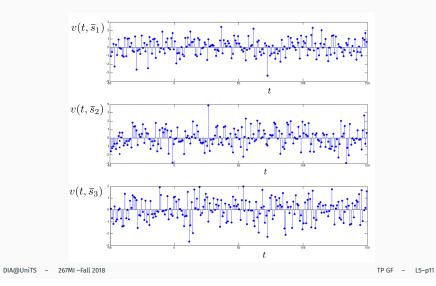
Stochastic processes (cont.)

In practice a stochastic process is a set of infinite r.v. ordered with respect to time.



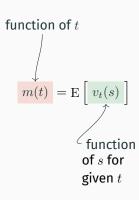
Stochastic processes (cont.)

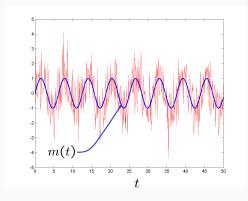
In practice a stochastic process is a set of infinite r.v. ordered with respect to time.



Description of a stochastic process (cont.)

• First-order moment (expected value or average):





Description of a stochastic process

 From a formal point of view, the full description of a stochastic process entails the knowledge of the probability distribution function:

$$\mathcal{P}[x(t_1) \le x_1, \ x(t_2) \le x_2, \ \cdots, \ x(t_k) \le x_k]$$

for every arbitrary value of

$$k, x_1, x_2, \cdots, x_k, t_1, t_2, \cdots, t_k$$

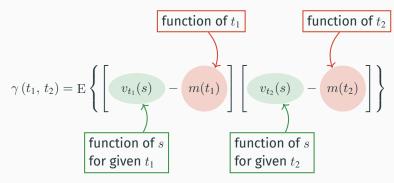
 Such description is clearly not practical. Therefore, we assume that the stochastic process is fully described by the first- and second-order moments.

DIA@UniTS - 267MI -Fall 2018

TP GF - L5-p12

Description of a stochastic process (cont.)

• Second-order moment (covariance function):



Correlation function:

$$\mathbb{E}\left[v_{t_1}(s)\cdot v_{t_2}(s)\right]$$

Coincides with covariance function when $m(t) \equiv 0 \ \forall t$.

DIA@UniTS - 267MI -Fall 2018 TP GF - L5-p13 DIA@UniTS - 267MI -Fall 2018 TP GF - L5-p14

Description of a stochastic process (cont.)

Therefore:

For our purposes, we assume that a stochastic process is fully described by first- and second-order moments: m(t), $\gamma(t_1, t_2)$.

Two stochastic processes with the same first- and second-order moments are **undistinguishable by hypothesis**.

DIA@UniTS - 267MI -Fall 2018

TP GF - L5-p15

Gaussian stochastic processes

Gaussian processes

irrespective of the choice of the time-instants t_1, t_2, \ldots, t_N the random variables $v_{t_1}(s), v_{t_2}(s), \ldots, v_{t_N}(s)$ are jointly Gaussian, that is:

$$f(v_1, v_2, ..., v_N) = \alpha \exp \left\{ -\frac{1}{2} (v - \mu)^T \Sigma^{-1} (v - \mu) \right\}$$

where

$$v = [v_1, v_2, \dots, v_N]^T$$
 $\mu = E(v)$ $\Sigma = var(v)$

Stationary stochastic processes

Stationary stochastic process

A stochastic process is stationary (in weak sense) if:

•
$$m(t) \equiv m = \mathsf{const}$$

•
$$\gamma(t_1, t_2) = \gamma(\tau), \quad \tau = t_2 - t_1$$

This assumption greatly simplifies several derivations and, especially, implies the possibility of analyzing the probability distribution without caring about the specific time-instant.

DIA@UniTS - 267MI -Fall 2018

TP GF - L5-p16

Stationary stochastic process: normalized covariance

- Consider a stationary stochastic process for which:
 - $m(t) \equiv m = \text{const}$
 - $\gamma(t_1, t_2) = \gamma(\tau), \quad \tau = t_2 t_1$

Clearly, the variance of the process is $\gamma(0)$ and we define the **normalized covariance**:

$$\rho\left(\tau\right) = \frac{\gamma\left(\tau\right)}{\gamma\left(0\right)}$$

White stochastic processes

White process

A stochastic process $\varepsilon(t)$ is defined white if

•
$$\mathbf{E}\left[\varepsilon(t)\right] = 0$$

• $\gamma(\tau) = \begin{cases} \lambda^2, & \tau = 0\\ 0, & \tau \neq 0 \end{cases}$

and we denote: $\varepsilon \sim {\sf WN}\left(0,\,\lambda^2\right)$

In a white process what happens at different time-instants is unrelated, thus the knowledge of $\varepsilon(t)$ does not help in gaining knowledge about $\varepsilon(t+1)$.

DIA@UniTS - 267MI -Fall 2018

TP GF - L5-p19

267MI -Fall 2018

Lecture 5

A (very) short glimpse on probability theory, random variables and discrete-time stochastic processes

END