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The estimation problem

* The estimation problem arises when there is a need of
determining one or more unknown quantities using

experimentally observed data
Experimental observations Unknown parameter(s)
dit), t=ty, ta, ...ty I(t)

In most cases the unknown parameters are constant

«T={t, ta, ..., tn} set of the observation time-instants
« In general, there is no need of equally-spaced ¢;
- If there is the possibility of choosing the instants ¢; when to get
experimental data, it is convenient to have more observations
where the experiment is more significant.
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The estimator is a deterministic function yielding as output the
unknown parameters on the basis of the observed data as inputs
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Estimation of time-varying parameters

d(ty) —
d(t I(t)
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- The estimate generated by the estimator is denoted as ¥ (¢| 7))
or simply as 9 (t| N) ifwe cansetT = {1, 2, ..., N}.

« Typically we have three cases:

« t > txn: problem of prediction

t
« t =tn: problem of filtering / \

« t < ty: problem of smoothing

t1t2 tn
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Estimation of constant parameters

d(ty) ]
dlty) — ] I(t)
2 — 70

d(ty) ]

« If 9(¢t) = J = const we have a parametric estimation or
identification problem.

« The estimate given by the estimator is denoted as 9 or Jr to
enhance the set of observation time-instants.

+ The “true” value of the parameter is denoted as 9°.
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The prediction problem

It is a fundamental problem in the context of dynamical systems
identification

+ To set the basics, let us focus on the case of time-series

+ A sequence of observations y(1), y(2), ..., y(t) of a variable
y () is available.

+ We want to estimate y(t + 1)
« Therefore, we want to design a predictor

g}(t—&-l\t):f[y(t), y(t_l)’ 000 g y(l)]
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The prediction problem (cont.) The prediction problem (cont.)

« The predictor expresses an estimate (¢t + 1|t) of y(t+1) as a

function of ¢ past values of y (- + A predictor is linear time-invariant if
past gt+1t)=ary@t)+ - +anyt—n+1
gt+11[t) =ary(t) y( )
:1 2 tt+ 1 where the parametersa;, ..., a, are constant
+ We define the vector of parameters 97 = [a;, ..., a,]

« A predictor is linear if

g(t+1|t)=ai(t) -y(t)+- -+ a(t) -yl .. . ..
i 1t 1(8) - y(®) (&) -y(1) Determining a “good” predictor means determining a

- A predictor is finite-memory (hence uses a limited memory of suitable vector ¢ such that the prediction g (¢t + 1 [t)
the past) if is the more accurate possible

G+ 1) =ar(t) yit)+-- +an(t) -yt —n+1)
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The prediction problem (cont.) The prediction problem (cont.)

More precisely:

The vector 97 =[a;, ..., a,] is “good”

- Consider a finite-memory linear time-invariant predictor S )
if € is “small” over the available data.

git+1t)=aiyt)+---+apy(t—n+1)

where n is “small” with respect to the number of data
observed till time-instant ¢

+ Introduce the criterion:

The performances of the predictor can be evaluated on the ;
. - J () = )’
already-available data: y(i) i=1, ..., t (@) i;ﬂ ((2))
+ we compute
* Hence
g+1li)=ary@)+---+any(i—n+1), Vi>n 9° = argmin J ()

9
» We evaluate the prediction error The determination of ¥° is thus reduced to the solution of an

i+ ) =yli+1)—gG+1|i), Vi>n optimization problem.
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It is very important to clarify the meaning of ¢ “small”

unpredictable as possible”

€
3

=

F41 =0 : e(~)~WN(0, ,\2)

b4 .
Tt b
. 1- (b) / K
white noise variance

« CasE (A): not satisfactory because the average error ¢ is not
zero = systematic error

« CAsE (B): despite the fact that the average error £ is zero, it is
not satisfactory because the sequence is alternatively positive
and negative; hence, at any time-instant the sign of the next
error is known in advance = The predictor does not embed all
the information

average
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Predictor as a dynamic system

gt —1) =ayt—1)+ - +any(t —n)

e =y®) -gtlt-1) = ylt)=e@®+g(tlt-1) A Glimpse on
y(t) = ary(t — 1) + - + any(t — n) + (1) Estimation theory
&

y(t) = (a127" + -+ anz ) y(t) +£(t) . , . .
Estimators’ characteristics

A(2)y(t) = e(t) with A(z) =1 — az —apz 2= — a2z

y(t) = e(t) e(t) 1 y(t)
A(2)
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* In general we have:

d=d(s, 9°) « In general, the estimator ¥ = f[d (s, ¥°)] is unbiased if
where 5 (19) _ e
+ d <= observed (measured) data
* 9% <= unknown quantity to be estimated - Clearly, it is important to try to ensure that the estimator is
+ s <= result of the random experiment unbiased

» The estimator is a function:

D= fld(s, 0°)] In this example, the
estimators are both
biased but the

52

The estimator is a random variable because estimator 9@ is &
its val_ue depens on the result s of the random characterized by a | 2] o) .
experiment lower bias
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Minimum variance Minimum variance (cont.)

.. Y . o « In general, under the same bias characteristics, we say that the
« The “unbiasedness” (correctness) is not the only criterion to be . A1) 3 . 3(2)
, ) estimator 9" is better than the estimator ¢'% if
used to evaluate the quality of an estimator.

In this case, both var {3(1)} < an {5&2)}

estimators are 50
unbiased. that is, if the matrix ( ¥ may be a vector)
el ~ ~
However: i var [79@)} — var {19“)} >0
' B[] = p[i@] =g
var [19(1)} < var [@(2)}  Recallingthat A >0 = detA>0, \; >0, a; >0, we have
. Her.1ce, the estimator J(") has a higher probability of'yielding var [19(2)} ~var {19(1)} >0 > var {@52)} > var {1%1)}
estimates closer to the true value ¥° as compared with the
estimator 9 1 52) ,
. . . where ;" , ¥, denote the i-th components of the vectors
« Therefore, the goal is to reduce the variance of the estimator as 50 5@

much as possible.
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Estimate’s confidence Asymptotic characteristics

Consider an estimator ¥:

+ If the number N of available data increases over time
« the available information to compute the estimate increases
« the uncertainty decreases

area = (1 — f)

- From this perspective the estimator Jy is “good” if

_

— 9° O lim var {191\/} =0

N—o0

~ 3(1)] — ‘2. — 3(3)] — 90 9
The estimate 9 belongs to the interval (—©, ©) around ¥° with EpO] =2 p@] = £ O] =0

confidence (1 — ) -100% .
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Convergence in “quadratic mean” Almost-sure convergence

* Recall that the estimator based on N data is
- When the estimate Jy is computed on the basis of a 5 o o
en e o N B omP AT D (5, 0°) = Fld(s, 9°)
time-increasing amount of data NV, another estimate’s quality

criterion is 5 - For a given 5 € S, we have a sequence
lim E [HéN —° } 0 (¥ A A A
e Dy (s, 9°), Dy (s, 9°), ..., On (s, 9°), ...
If (+) holds we say that the estimate J convergesto ¥° in
“quadratic mean” + It may happen that:
. N9tice that J is a random vector, ¥° is a constant vector and 5 €S m—m ]\;E}I;o In (5, 9°) =°
HﬁN —9°|| is a scalar random variable with a well-defined K
expected value. § €S m—mmm— A}gnoo In (5, 0°) £ 9°
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Almost-sure convergence (cont.)

« Introduce the set of random experiment results

ACS,A:{seSlei_rgcﬁN(s,19°):19°}

If A= S == Sure convergence

If AC Sand P(A) =1 ====p Almost-sure convergence

Note that, if the measure of the set S\ A is zero, this
implies P(A) = 1 and hence almost-sure convergence.

*ClearlyA=S = P(4) =1
Sure convergence =——=p Almost-sure convergence

« An estimator characterized by almost-sure convergence
properties is called consistent.
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Example 1 (cont.)
* Bias:
R 1 N 1 N 1 N
E [ﬁN} =E {N; [d(l)]} =N ;E[d(l)] = N;ﬁ =1

[the estimator is unbiased]

* Variance:
var () = B{ [ox — 5 (0)] b = 5
—E{ [ﬁ:d(i) ey

=1

2

N
b Z var [d(i)] the “cross-terms” are zero because of
N? 8=l the assumption on un-correlated data
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- Consider N scalar data d(1), d(2), ..., d(N) such that
E[d@)]=9°, i=1,2,..., N
« Assume that data are mutually un-correlated, that is
E{ld(i) - 9°] [d(j) —9°]} =0, Vi#j

+ Consider the estimator
N
Iy = > d(i) Sampled-average estimator
N — N —
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Example 1 (cont.)

s Ifvar[d(i)]<a,i=1,2,..., N

lim var (@N) < lim z =0
N—oo N—co

(the estimator converges in quadratic mean]
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« Bias:

> ali) d(i)} = o) Bd@)] =) a(i)

- Consider N scalar data d(1), d(2), ..., d(N) such that E {ﬁN] =k {

i=1 i=1

Eld@)] =9, i=1,2,..., N
N

The estimator is unbiased <= 3" a(i) =1 ()

 Assume that the data are mutually un-correlated, that is
i=1

E{ld(i) —9°] [d(j) —9°]} =0, Vi#j
N.B. in the previous case a(i) = % and hence (x) holds

« Consider the estimator

N
— Z a(4) d(i) Condition (%) is a constraint to be satisfied so that the
=1 estimator is unbiased.
This constraint characterizes a class of unbiased estimators
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Example 2 (cont.) Example 2 (cont.)
+ Let us now determine the best estimator among the unbiased o] 0 ol (i A= 0 A
ones (hence satisfying the constraint (x) ) choosing the oa(i) = 2a(@)var[d(@)] - A =0 < a(i) = 2 var [d(i)]
minimum variance one
un-correlated data . . ) .
x « Now, imposing the constraint (x) for unbiasedness
2 N N
minvar (Y5) = min a(z var [d(i)] N il A 1 —1 _ 2
( ) Z ;a(z) — 2;var[d(z‘)] = A o ;
W =1 var [d(i)]
= a() = 0
; v a(i)—*a with a—;
: - . ~ var [d(i)] X
By using the Lagrange multipliers technique we have: Z —
“— var [d(i)]
N =
( ) Z @) - var [d(@)] + A ZO‘ Hence, a(z) is chosen to be inversely proportional to the data
= variance var [d(7)]: the bigger the data variance, the smaller the

associated weight (consistent with intuition).
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Example 2 (cont.) Example 2 (cont.)

« Let us compute the estimator’s variance:

v (i) =B { [ox ~ 2 (9w)] | = E{ ,,

:E{

N lim var (19]\;) < lim g _ 0

’ N 2 2 N—o00 ~ N—osoo N
3" a(i) [d(i) —ﬁﬂ } =Y 0GP E{1d6) - 9}

i=1

[the estimator converges in quadratic meanJ

N N | |
A2 . )
= a1 ar [d(7)] = « Z =
>~ (o)) var ()] = @ Y e =
1=1 1=1 Z
“— var [d(i)]
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Generalization

« When the quantities to be estimated are time-varying, it is
necessary to modify the estimators’ quality indexes.

267MI -Fall 2018

- Denote with 9 (|t — 1) the estimate of ¥°(t) exploiting data
collected till time-instant ¢ — 1 Lecture 6

« Clearly, as 0°(¢) varies over time, it does not make sense to talk
about asymptotic convergence in terms of data in the past that

may turn up not to be meaningful any more. estimation and prediction prob-
« Atypical criterion is lems

Definitions and properties of the

E [Hﬁ(ﬂt 1) - 19"(15)“2} <ec
END

where c is a suitably small positive scalar

« In this time-varying case what matters is not “convergence” but
“boundedness”
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