
Systems Dynamics
Course ID: 267MI – Fall 2018

Thomas Parisini
Gianfranco Fenu

University of Trieste
Department of Engineering and Architecture



267MI –Fall 2018

Lecture 13
State estimation from observed
data

DIA@UniTS – 267MI –Fall 2018 TP GF – L13–p1



Kalman estimation



Recall the basic facts about Bayes estimation

• We look for an estimation method allowing to embed the
possible a-priori knowledge on the unknown quantity to be
estimated

• In the framework of Bayes estimation also the unknown vector
ϑ is interpreted as a random vector

• The probability density function p(ϑ) in absence of observed
data is the a-priori probability density function embedding the
available information on ϑ before collecting the data.
Hence, in absence of data, the a-priori estimator could be

ϑ̂ = E(ϑ) =

∫
ϑp (ϑ) dϑ

and the estimate uncertainty var(ϑ̂) would be the a-priori
uncertainty.
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Recall the basic facts about Bayes estimation (cont.)

• Clearly, as soon as new data are collected, the probability
density function p(ϑ) changes. As a consequence, E(ϑ) and
var(ϑ) change as well. In particular, we expect var(ϑ) to
decrease.

• Summing up, the basic idea is to consider a joint random
experiment with respect to ϑ and to d and this is the
conceptual peculiarity of the Bayes estimation approach.
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Recall the basic facts about Bayes estimation (cont.)

• Consider the generic estimator as function of the data

ϑ̂ = h(d)

and define the cost functional

J [h(·)] = E
[
∥ϑ− h(d)∥2

]
• The goal is to determine an estimator h◦(·) such that J [h(·)] is
minimized, that is we have to determine

h◦(·) : E
[
∥ϑ− h◦(d)∥2

]
≤ E

[
∥ϑ− h(d)∥2

]
, ∀h(·)

where the expected values are computed with reference to the
joint random experiment.
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Recall the basic facts about Bayes estimation (cont.)

Assuming for the moment that ϑ and d are scalar

h◦(x) = E (ϑ | d = x)

The optimal Bayes
estimator is the expected
value conditioned to the
actual observed data

and thus ϑ̂ = h◦(δ) , where δ is the specific value taken on by d in
the random experiment.

Remark. The generalization to the vector case is trivial.
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Bayes Estimation in the Gaussian Case

• Assume that d and ϑ are marginally and jointly Gaussian
random variables:[

d

ϑ

]
∼ G

([
0
0

]
,

[
λdd λdϑ

λϑd λϑϑ

])
and

p(d, ϑ) = C exp

−12 [d ϑ]

[
λdd λdϑ

λϑd λϑϑ

]−1 [
d

ϑ

]
• We obtain:

p(ϑ | d) is Gaussian with:
• expected value λϑd

λdd
d

• variance λ2 = λϑϑ − λ2ϑd

λdd
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Bayes Estimation in the Gaussian Case (cont.)

• Then, the optimal Bayes estimator is given by

ϑ̂ = h◦(x) = E (ϑ | d = x) =
λϑd

λdd
d

Recalling that E(d) = 0 , E(ϑ) = 0 by assumption, we obtain
that E(ϑ̂) = 0 and hence the variance of the optimal estimator
is

var (ϑ− ϑ̂) =E
[
(ϑ− ϑ̂)2

]
= E

[(
ϑ− λϑd

λdd
d

)2]

=E
(
ϑ2
)
− 2 λϑd

λdd
E(ϑd) +

λ2ϑd
λ2dd

E
(
d2
)

var (ϑ− ϑ̂) = λϑϑ − λ2ϑd
λdd

= λ2
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Optimal Linear Estimator

• Let us remove the assumption for which d and ϑ are
marginally and jointly Gaussian random variables, and let us
just assume that E(d) = 0, E(ϑ) = 0

• As before, let us use the notations E(d
2) = λdd , E(ϑ2) = λϑϑ ,

E(ϑd) = λϑd

• Impose that the estimator takes on a linear structure:

ϑ̂ = αd+ β

where α and β are suitable parameters to be determined.
• Introduce the cost function:

J = E

[(
ϑ− ϑ̂

)2]
= E

[
(ϑ− αd− β)

2
]

ϑ̂ =
λϑd

λdd
d

Optimal linear
estimator
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Optimal Linear Estimator (cont.)

• The variance of the optimal linear estimator is given by:

var (ϑ− ϑ̂) =E
[
(ϑ− ϑ̂)2

]
= λϑϑ + α2λdd + β2 − 2αλϑd

=λϑϑ +
λ2ϑd
λ2dd

λdd − 2
λϑd

λdd
λϑd = λϑϑ − λ2ϑd

λdd
= λ2

Therefore:

• the optimal linear estimator is formally equal to the Bayes one.
• If the Gaussian assumption on the random variables holds,
then the optimal linear estimator actually is the best possible
in the minimum variance sense

• If the Gaussian assumption on the random variables does not
hold, then the linear estimator is sub-optimal, but still it is the
best estimator constrained to take on a linear structure in the
case in which no further assumptions are introduced on the
probabilistic characteristics of the random variables
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Generalizations

• If E(d) = dm , E(ϑ) = ϑm

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

var (ϑ− ϑ̂) = λϑϑ − λ2ϑd
λdd

• If d and ϑ are vectors with E(d) = dm , E(ϑ) = ϑm and

var

([
d

ϑ

])
=

[
Λdd Λdϑ

Λϑd Λϑϑ

]
Λdϑ = Λ⊤

ϑd

ϑ̂ = ϑm + Λϑd Λdd
−1 (d− dm)

var (ϑ− ϑ̂) = Λϑϑ − Λϑd Λdd
−1Λdϑ
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Interpretations and remarks

• Consider for simplicity the Bayes estimator in the simple case:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

Then:

• ϑm = E(ϑ) is the a priori estimate: in case of no observations
availability, it is the more reasonable estimate. In this case, we
have:

ϑ̂ = ϑm var (ϑ− ϑ̂) = λϑϑ = var (ϑ)

• Instead, when observations are available, we have:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

A-priori part
of the estimate

Correction term
exploiting
observed data
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Interpretations and remarks (cont.)

Clearly:

• If λϑd = 0 then ϑ̂ = ϑm and this is correct: it means that the
data observation d is uncorrelated with ϑ and hence it does
not convey useful information for the estimate:the a-posteriori
estimate coincides with the a-priori one.

• If λϑd ̸= 0 then the estimate is corrected on the basis of the
observed data:

• If λϑd > 0 then ϑ̂− ϑm and d− dm in the average keep the
same sign and the correction is more likely to keep the same sign
as well

• If λϑd < 0 then ϑ̂− ϑm and d− dm in the average have a
different sign and the correction is more likely to change the
same sign as well
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Interpretations and remarks (cont.)

• It also very important to enhance the role played by the
variance λdd that “quantifies” the degree of uncertainty of the
observed data:

ϑ̂ = ϑm +
λϑd

λdd
(d− dm)

the larger λdd , the smaller the applied correction, that is, the
update is “more cautious”

• Moreover:

var (ϑ− ϑ̂) = λϑϑ − λ2ϑd
λdd

= λϑϑ

(
1− λ2ϑd

λϑϑλdd

)
and thus var (ϑ− ϑ̂) ≤ var (ϑ) and

var (ϑ− ϑ̂) < var (ϑ) if λϑd ̸= 0

and this is correct because it expresses the fact that the
estimate cannot but improve whenever the observed data
convey useful information
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Kalman estimation

• In Kalman estimation we address the problem of estimating
variables that are not directly available and without making
any assumption on the stationarity of the stochastic processes
(unlike what has been done since now).

Example:
signal filtering
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Kalman estimation (cont.)

• We refer to system’s descriptions through state equations:

x(t+ 1) = Fx(t) + v1(t) x, v1 ∈ Rn

y(t) = Hx(t) + v2(t) y, v2 ∈ Rp

• v1 ∼ WGN(0, V1), v2 ∼ WGN(0, V2)
• v1(·), v2(·) independent, mutually and with x(1)
• F, H, V1, V2 known

filtering prediction
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State estimation and Bayes estimation

• Since v1(t) and v2(t) are random variables, also x(t) and y(t) are
r.v. =⇒ both the data y(t), y(t− 1), . . . and the unknown x(t)

are r.v. =⇒ it is natural to resort to the Bayes framework
• From the Gaussian assumption on the exogenous variables and
the linearity of the dynamic system it follows that the
probability density functions of the state, the output and the
state/output joint probability density functions are Gaussian as
well.

x̂(t+ r |t) = x(t+ r)m + Λx(t+r)d Λdd
−1 (d− dm)

where:
• x(t+ r)m := E[x(t+ r)]

• d := yt := col [y(t), y(t− 1), . . . , y(1)]
• dm := E[d]

DIA@UniTS – 267MI –Fall 2018 TP GF – L13–p15



State estimation and Bayes estimation (cont.)

• But:
E[v1(t)] = 0, E[v2(t)] = 0 =⇒ E[x(t)] = 0, E[y(t)] = 0

x̂(t+ r |t) = Λx(t+r)d Λdd
−1 d (⋆)

Remark: formula (⋆) makes sense also if the Gaussian
assumptions do not hold. In such a case Λx(t+r)d Λdd

−1 d is the
best linear estimator

• (⋆) solves the problem but it is NOT recursive. Instead, we want
to obtain a recursive estimator of the form:

x̂(t+ r |t) = f [x̂(t+ r − 1 |t− 1)]
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Recursive form of Bayes estimation

• For now, denote by ϑ the unknown to be estimated and by d

the observed data.
• Suppose (just for simplicity and without loss of generality) that

• ϑ scalar
• d(1), d(2) two scalar data
• E(ϑ) = 0, E[d(1)] = 0, E[d(2)] = 0

• Then  ϑ

d(1)
d(2)

 ∼ G


 0
0
0

 ,

 λϑϑ λϑ1 λϑ2
λ1ϑ λ11 λ12
λ2ϑ λ21 λ22




where λϑϑ = E(ϑ
2), λϑ1 = E[ϑd(1)], . . .
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Recursive form of Bayes estimation (cont.)

• The estimate of ϑ based on the single data point d(1) is given by

E[ϑ | d(1)] = λϑ1
λ11

d(1)

• Instead, the estimate of ϑ based on two data points d(1), d(2) is

E[ϑ | d(1), d(2)] = [λϑ1 λϑ2 ]

[
λ11 λ12
λ21 λ22

]−1 [
d(1)
d(2)

]
where λ12 = λ21 But[

λ11 λ12
λ21 λ22

]−1
=

1
λ11λ22 − λ212

[
λ22 −λ12
−λ12 λ11

]
and hence

E[ϑ | d(1), d(2)] = 1
λ11λ22 − λ212

[(λϑ1λ22 − λϑ2λ12) d(1)+

+ (−λϑ1λ12 + λϑ2λ11) d(2) ]
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Recursive form of Bayes estimation (cont.)

• letting λ2 = λ22 −
λ212
λ11

we have

E[ϑ | d(1), d(2)] = 1
λ11λ2

(−λϑ1λ12 + λϑ2λ11) d(2)

+
1

λ11λ2
(λϑ1λ22 − λϑ2λ12) d(1)

• Adding and subtracting the term E[ϑ | d(1)] = λϑ1
λ11

d(1)

E[ϑ | d(1), d(2)] = 1
λ11λ2

(−λϑ1λ12 + λϑ2λ11) d(2)

+
1

λ11λ2
(λϑ1λ22 − λϑ2λ12) d(1) +

λϑ1
λ11

d(1)− λϑ1
λ11

d(1)
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Recursive form of Bayes estimation (cont.)

recursion

E[ϑ | d(1), d(2)] = 1
λ2

(
λϑ2 − λϑ1

λ12
λ11

)
d(2)

+
1
λ2

(
λϑ1

λ22
λ11

− λϑ2
λ12
λ11

− λϑ1
λ2

λ11

)
d(1) + λϑ1

λ11
d(1)

• substituting λ2 = λ22 −
λ212
λ11

we have

E[ϑ | d(1), d(2)] =λϑ1
λ11

d(1)

+
1
λ2

(
λϑ2 − λϑ1

λ12
λ11

) [
d(2)− λ12

λ11
d(1)

]
• Definition. Given two random variables d(1) and d(2) we call
innovation of d(2) with respect to d(1) the quantity:

e = d(2)− E[d(2) | d(1)] = d(2)− λ12
λ11

d(1)
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Recursive form of Bayes estimation (cont.)

Let us analyze the random variable e :

• e is a linear combination of d(1) and of d(2) that are Gaussian
=⇒ e is Gaussian. Moreover ϑ, d(1), e are jointly Gaussian

• E(e) = 0

• λee = E

[(
d(2)− λ12

λ11
d(1)

)2]
= λ22 +

λ212
λ211

λ11 − 2
λ212
λ11

= λ2

• λϑe = E

[
ϑ

(
d(2)− λ12

λ11
d(1)

)]
= λϑ2 − λϑ1

λ12
λ11

• λ1e = E

[
d(1)

(
d(2)− λ12

λ11
d(1)

)]
= λ12 − λ11

λ12
λ11

= 0

The innovation e is uncorrelated with d(1)
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Recursive form of Bayes estimation (cont.)

• Hence

E[ϑ | d(1), d(2)] =λϑ1
λ11

d(1)

+
1
λ2

(
λϑ2 − λϑ1

λ12
λ11

) [
d(2)− λ12

λ11
d(1)

]
=

λϑ1
λ11

d(1) + λϑe

λee
e

and, since ϑ, d(1), e are jointly Gaussian, we have

E[ϑ | d(1), d(2)] = E[ϑ | d(1)] + E[ϑ | e]

Thus: the optimal estimate can be expressed also as a function
of the innovation.
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Recursive form of Bayes estimation (cont.)

• Observe that

E[ϑ | d(1), e] = E[ϑ | d(1)] + E[ϑ | e]

because e is uncorrelated with d(1) ; thus, the optimal estimate
given d(1), d(2) coincides with the optimal estimate given
d(1), e

d(2) and e have the same information content
In particular:

e = d(2)− E[d(2) | d(1)] =⇒ d(2) = E[d(2) | d(1)] + e

and hence the innovation represents the “part” of d(2) which is
not predictable on the basis of d(1).

The innovation represents the actual information
content of d(2) with respect to d(1)
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Generalization to the vector case

• Now, if ϑ, d(1), d(2) are zero-mean vectors we have: ϑ

d(1)
d(2)

 ∼ G


 0
0
0

 ,

 Λϑϑ Λϑ1 Λϑ2
Λ1ϑ Λ11 Λ12
Λ2ϑ Λ21 λ22




where Λϑ1 = Λ⊤
1ϑ, Λϑ2 = Λ⊤

2ϑ, Λ21 = Λ⊤
12

• We obtain:

e = d(2)− E[d(2) | d(1)] = d(2)− Λ21Λ
−1
11 d(1)

and hence:

E[ϑ | d(1), d(2)] =E[ϑ | d(1)] + E[ϑ | e]
= Λϑ1Λ

−1
11 d(1) + ΛϑeΛ

−1
ee e
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Generalization to the non-zero mean case

• Now, if ϑ, d(1), d(2) are non-zero mean vectors we have: ϑ

d(1)
d(2)

 ∼ G


 ϑm

d(1)m
d(2)m

 ,

 Λϑϑ Λϑ1 Λϑ2
Λ1ϑ Λ11 Λ12
Λ2ϑ Λ21 λ22




• We obtain:

E[ϑ | d(1), d(2)] =E[ϑ | d(1)] + E[ϑ | e]− ϑm

=ϑm + Λϑ 1Λ
−1
11 [d(1)− d(1)m] + ΛϑeΛee

−1 e

where, in analogy with the zero-mean scalar case we have:

• E(e) = 0

• Λ1e = E
{
[d(1)− d(1)m]⊤ e

}
= 0

• Λϑe = Λϑ2 − Λϑ1 Λ
−1
11 Λ12
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Geometric interpretation of Bayes recursive estimation

Recall (Bayes estimation):

• Suppose that d and ϑ are marginally and jointly Gaussian
random variables:[

d

ϑ

]
∼ G

([
0
0

]
,

[
λdd λdϑ

λϑd λϑϑ

])
Hence d and ϑ can be interpreted geometric vectors

• Define the scalar product (ϑ, d) = E(ϑ · d)
• The usual properties of vector spaces equipped with scalar
product hold true. In particular:

∥ϑ∥ =
√
(ϑ, ϑ)

∥d∥ =
√
(d, d)

(ϑ, d) = ∥ϑ∥ ∥d∥ cosα
• Uncorrelated random variables correspond to orthogonal
vectors
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Geometric interpretation of Bayes recursive estimation (cont.)

• Now:

ϑ̂ =
λϑd

λdd
d =

E(ϑ · d)
E(d · d)

d =
(ϑ, d)

∥d∥2
d =

(ϑ, d)

∥d∥2
∥ϑ∥
∥ϑ∥

d

=
(ϑ, d)

∥ϑ∥∥d∥
∥ϑ∥ d

∥d∥
= ∥ϑ∥ cosα

d

∥d∥

The optimal estimate ϑ̂ is
the projection of ϑ on the
data vector d

• Then consider the vector ϑ− ϑ̂ . It follows that:

∥ϑ− ϑ̂∥2 = ∥ϑ∥2 − ∥ϑ̂∥2 = ∥ϑ∥2 − ∥ϑ∥2 (cosα)2

= λϑϑ − λϑϑ
λ2ϑd

λddλϑϑ
= λϑϑ − λ2ϑd

λdd

The error variance is the square of the length of vector ϑ− ϑ̂ .
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Geometric interpretation of Bayes recursive estimation (cont.)

• In the prediction problem, v̂(t+ r|t) is the projection of v(t+ r)

(interpreted as a geometric vector) on the subspace
(hyperplane)

Ht[ξ] ( = Ht[v])
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Geometric interpretation of Bayes recursive estimation (cont.)

• If  ϑ

d(1)
d(2)

 ∼ G


 0
0
0

 ,

 Λϑϑ Λϑ1 Λϑ2
Λ1ϑ Λ11 Λ12
Λ2ϑ Λ21 λ22




we are able to consider ϑ, d(1), d(2) as geometric vectors, and
hence
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Geometric interpretation of Bayes recursive estimation (cont.)

• Note that:
• e lies on the plane Ht[d(1), d(2)] and is orthogonal to d(1)

• E[ϑ | d(1)] is orthogonal to E[ϑ|e]

• E[ϑ | d(1), d(2)] = E[ϑ | d(1)] + E[ϑ | e]

not true in general
• E[ϑ | d(1), d(2)] ̸= E[ϑ | d(1)] + E[ϑ | d(2)]
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One-step ahead Kalman predictor

• Consider the dynamic system{
x(t+ 1) = Fx(t) + v1(t)

y(t) = Hx(t) + v2(t) x, v1 ∈ Rn, y, v2 ∈ Rp

• v1 ∼ WGN(0, V1), v2 ∼ WGN(0, V2)

• v1(·), v2(·) independent, mutually and with x(1)

• F, H, V1, V2 known, V2 > 0
• We want to design a one step ahead state predictor in recursive
form:

x̂ (t+ 1|t) function of x̂ (t|t− 1)
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One-step ahead Kalman predictor (cont.)

Let us enhance the role played by the innovation:

• the prediction of x(t+ 1) is based on the data
y(t), y(t− 1), . . . , y(1)

• yt = col[y(t), y(t− 1), . . . , y(1)] generates the subspace of the
past H[yt]

• The innovation provided by the (t+ 1)-th data-point with
respect to yt is given by

e(t+ 1) = y(t+ 1)− E
[
y(t+ 1|yt

]
and hence the situation is:
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One-step ahead Kalman predictor (cont.)

• The state prediction error is:

ν(t+ 1) = x(t+ 1)− x̂(t+ 1 | t) = x(t+ 1)− E
[
x(t+ 1) |yt

]
and thus the situation now is:

The state prediction error ν(t+ 1) is orthogonal to the past
H
[
yt
]
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Optimal one-step ahead output prediction

• We have:

ŷ(t+ 1 | t) =E
[
y(t+ 1) |yt

]
=E

[
Hx(t+ 1) + v2(t+ 1) |yt

]
=H E

[
x(t+ 1) |yt

]
+ E

[
v2(t+ 1) |yt

]
=H x̂(t+ 1 | t) + E

[
v2(t+ 1) |yt

]
• Let us analyze the term E

[
v2(t+ 1) |yt

]
:

x(t) = f
[
vt−1
1 , x(1)

]
= f [v1(t− 1), v1(t− 2), . . . , v1(1), x(1)]

y(t) = f̄
[
vt−1
1 , x(1), v2(t)

]
=⇒ yt = f̄

[
vt−1
1 , x(1), vt

2
]

• v2(·) white =⇒ v2(t+ 1) independent from vt
2

• v1(·), v2(·) independent, mutually and with x(1) [Hp.]
• v2(t+ 1) independent with yt

E
[
v2(t+ 1) |yt] = E [v2(t+ 1)] = 0

ŷ(t+ 1 | t) = H x̂(t+ 1 | t)
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Recursive one-step ahead prediction

• We have

x̂(t+ 1 | t) =E
[
x(t+ 1) |yt

]
=E

[
x(t+ 1) |yt−1, y(t)

]
• From the recursive Bayes formula:

x̂(t+ 1 | t) = E
[
x(t+ 1) |yt−1]+ E [x(t+ 1) | e(t)]

• Let us first compute the term E
[
x(t+ 1) |yt−1] :

E
[
x(t+ 1) |yt−1] =E

[
Fx(t) + v1(t) |yt−1]

=F E
[
x(t) |yt−1]+ E

[
v1(t) |yt−1]

But v1(t) independent with yt−1

E
[
v1(t) |yt−1] = E [v1(t)] = 0

E
[
x(t+ 1) |yt−1] = F x̂(t | t− 1)
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Recursive one-step ahead prediction (cont.)

• Now compute the term E [x(N + 1) | e(N)]. From Bayes formula

E [x(t+ 1) | e(t)] = Λx(t+1)e(t) Λ
−1
e(t)e(t) e(t)

And hence the problem has been reduced to the one of
determining the matrices Λx(t+1)e(t) ,Λe(t)e(t)

• Expression of Λx(t+1)e(t) = E
[
x(t+ 1) e(t)⊤

]
e(t) =y(t)− E

[
y(t) |yt−1] = y(t)− ŷ(t | t− 1)

=H x(t) + v2(t)−H x̂(t | t− 1)
=H [x(t)− x̂(t | t− 1)] + v2(t)

Hence:

Λx(t+1)e(t) =E
{
[Fx(t) + v1(t)] · [H [x(t)− x̂(t | t− 1)] + v2(t)]

⊤
}

=F E
{
x(t) [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

+ F E
[
x(t)v2(t)

⊤]
+ E

{
v1(t) [H (x(t)− x̂(t | t− 1)) + v2(t)]

⊤
}
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Recursive one-step ahead prediction (cont.)

• Now, let us analyze separately the terms F E
{
x(t)v2(t)

⊤} and
E
{
v1(t) [H (x(t)− x̂(t | t− 1)) + v2(t)]

⊤
}

• (⋆) F E
[
x(t)v2(t)

⊤]
• v1(·), v2(·) independent, mutually and with x(1) [Hp.]
• v2(t) independent with x(t)

E
[
x(t)v2(t)

⊤
]
= E [x(t)] E

[
v2(t)

⊤
]
= 0

DIA@UniTS – 267MI –Fall 2018 TP GF – L13–p37



Recursive one-step ahead prediction (cont.)

• (⋆⋆) E
{
v1(t) [H (x(t)− x̂(t | t1)) + v2(t)]

⊤
}

= E
[
v1(t)x(t)

⊤]H⊤

− E
[
v1(t)x̂(t | t− 1)⊤

]
H⊤

+ E
[
v1(t)v2(t)

⊤]
• but v1(·) white =⇒ v1(t) independent with vt−1

2

• v1(·) independent with x(1) [Hp.] =⇒ v1(t) independent with
x(t)

E
[
v1(t)x(t)

⊤] = E [v1(t)] E
[
x(t)⊤

]
= 0
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Recursive one-step ahead prediction (cont.)

• Moreover x̂(t | t− 1) depends on yt−1 which, in turn, depends
on v1(t− 2), v1(t− 3), . . . , x(1) and on v2(t− 1) etc.

E
[
v1(t)x̂(t | t− 1)⊤

]
= 0

Λx(t+1)e(t) = F · E
{
x(t) [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

• Now, introduce the term x̂(t|t− 1) in order to make the state
prediction error ν(t) = x(t)− x̂(t|t− 1) to show up in the overall
formula:

Λx(t+1)e(t) =F · E
{
[x(t)− x̂(t | t− 1)] [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

+ F · E
{
x(t) [x(t)− x̂(t | t− 1)]⊤

}
·H⊤

Λx(t+1)e(t) =F · E
[
ν(t)ν(t)⊤

]
·H⊤ + F · E

[
x̂(t | t− 1)ν(t)⊤

]
·H⊤
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Recursive one-step ahead prediction (cont.)

• It is now worth introducing the state prediction error
covariance matrix:

P (t) = E
[
ν(t)ν(t)⊤

]
• Finally, notice that ν(t) is orthogonal to H[yt], whereas

x̂(t | t− 1) ∈ H[yt]

E
[
x̂(t | t− 1)ν(t)⊤

]
= E [x̂(t | t− 1)] E

[
ν(t)⊤

]
= 0

Λx(t+1)e(t) = F · P (t) ·H⊤
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Recursive one-step ahead prediction (cont.)

• Expression of Λe(t)e(t)

Recall that

e(t) =H [x(t)− x̂(t | t− 1)] + v2(t)

=H ν(t) + v2(t)

Hence

Λe(t)e(t) =E
[
e(t)e(t)⊤

]
=H · E

[
ν(t)ν(t)⊤

]
·H⊤ + E

[
v2(t)v2(t)

⊤]
+H · E

[
ν(t)v2(t)

⊤]+ E
[
v2(t)ν(t)

⊤] ·H⊤

and

ν(t) = f̆
[
yt−1, v2(t)

]
=⇒ H · E

[
ν(t)v2(t)

⊤] = 0

Λe(t)e(t) = H · P (t) ·H⊤ + V2
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Recursive one-step ahead prediction (cont.)

• Summing up

x̂(t+ 1 | t) = E
[
x(t+ 1) |yt−1]+ E [x(t+ 1) | e(t)]

where

E
[
x(t+ 1) |yt−1] = F x̂(t | t− 1)

E [x(t+ 1) | e(t)] = Λx(t+1)e(t) Λ
−1
e(t)e(t) e(t)

= F · P (t) ·H⊤ [H · P (t) ·H⊤ + V2
]−1

e(t)

and hence
x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)
where the gain matrix “weighting” the innovation is
K(t) = F · P (t) ·H⊤ [H · P (t) ·H⊤ + V2

]−1
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Riccati equation

We want to determine a recursive formula also for state prediction
error covariance matrix P (t) = E

[
ν(t)ν(t⊤

]
• Then, we need to express in recursive way

ν(t+ 1) = x(t+ 1)− x̂(t+ 1 | t)

But:
x(t+ 1) = Fx(t) + v1(t)

x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)

ν(t+ 1) = F [x(t)− x̂(t | t− 1)] + v1(t)−K(t)e(t)

= F ν(t) + v1(t)−K(t)e(t)

DIA@UniTS – 267MI –Fall 2018 TP GF – L13–p43



Riccati equation (cont.)

• On the other hand

e(t) = y(t)− ŷ(t | t− 1)
= Hx(t) + v2(t)−Hx̂(t | t− 1)
= Hν(t) + v2(t)

ν(t+ 1) = [F −K(t)H] ν(t) + v1(t)−K(t)v2(t)
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Riccati equation (cont.)

Hence

P (t+ 1) = E
[
ν(t+ 1)ν(t+ 1)⊤

]
= E

{
[F −K(t)H] ν(t)ν(t)⊤ [F −K(t)H]

⊤
}
+ E

[
v1(t)v1(t)

⊤]
+ E

[
K(t)v2(t)v2(t)

⊤K(t)⊤
]
+ E

{
[F −K(t)H] ν(t)v1(t)

⊤}
− E

{
[F −K(t)H] ν(t)v2(t)

⊤K(t)⊤
}

+ E
{
v1(t)ν(t)

⊤ [F −K(t)H]
⊤
}
− E

[
v1(t)v2(t)

⊤K(t)⊤
]

− E
{
K(t)v2(t)ν(N)⊤ [F −K(t)H]

⊤
}
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Riccati equation (cont.)

However ν(t) is independent with v1(t) and with v2(t):

E
[
v1(t)ν(t)

⊤] = E
[
ν(t)v1(t)

⊤] = 0
E
[
v2(t)ν(t)

⊤] = E
[
ν(t)v2(t)

⊤] = 0
E
[
v1(t)v2(t)

⊤] = E
[
v2(t)v1(t)

⊤] = 0

Riccati equation

P (t+ 1) = [F −K(t)H] P (t) [F −K(t)H]
⊤
+ V1 +K(t)V2K(t)⊤
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Riccati equation (cont.)

• Therefore, the Riccati equation is a recursive matrix equation
which, once initialized, allows to compute the matrix P (t)

• There are several equivalent forms of Riccati equation. The
following one is very useful because it does not explicitly
involve the gain matrix K(t) (this form can be derived by very
simple algebraic manupulations)

P (t+ 1) = F
{
P (t)− P (t)H⊤ [V2 +HP (t)H⊤]−1 HP (t)

}
F⊤ + V1
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Initialization of the Riccati recursive equation

• Notice that ν(1) = x(1)− x̂(1 | 0) but y(0) is not available and
thus we are not able to compute ν(1) ̇ and hence P (1)

• Then, let us “formally” start the recursion from P (2) :

P (2) = E
{
[x(2)− x̂(2 | 1)] [x(2)− x̂(2 | 1)]⊤

}
and since x̂(2 | 1) is the Bayes estimate of x(2) we can write:

P (2) = Λx(2)x(2) − Λx(2)y(1) Λ
−1
y(1)y(1) Λy(1)x(2)

but

Λx(2)x(2) = E
{
[Fx(1) + v1(1)] [Fx(1) + v1(1)]⊤

}
= FP1F

⊤ + V1

where we set P1 = var [x(1)] . Moreover:

Λx(2)y(1) = E
{
[Fx(1) + v1(1)] [Hx(1) + v2(1)]⊤

}
= FP1H

⊤

Λy(1)x(2) = Λ⊤
x(2)y(1)

Λy(1)y(1) = E
{
[Hx(1) + v2(1)] [Hx(1) + v2(1)]⊤

}
= HP1H

⊤ + V2

DIA@UniTS – 267MI –Fall 2018 TP GF – L13–p48



Initialization of the Riccati recursive equation (cont.)

• Then:

P (2) = FP1F
⊤ + V1 − FP1H

⊤ (HP1H
⊤ + V2

)−1
HP1F

⊤ (⋆)

(⋆) formally coincides with the Riccati
equation with the position P1 = P (1)

Interpretation
At instant 1, in which no past observed data are available, we
assume that x̂(1 | 0) = E[x(1)] = 0 . Thus

P (1) = E
{
[x(1)− x̂(1 | 0)] [x(1)− x̂(1 | 0)]⊤

}
= P1

The Riccati is initialized with P1 = P (1) = var [x(1)]
at instant 1 and not at instant 2 .
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Initialization of the estimate

• Let us address the initialization of

x̂(t+ 1 | t) = F x̂(t | t− 1) +K(t) · e(t)

We have:

x̂(2 | 1) =E[x(2) |x(1)] = Λx(2)y(1) Λ
−1
y(1)y(1) y(1)

=E
{
[Fx(1) + v1(1)] [Hx(1) + v2(1)]⊤

}
×
(
E
{
[Hx(1) + v2(1)] [Hx(1) + v2(1)]⊤

})−1
y(1)

=FP1H
⊤ (HP1H

⊤ + V2
)−1

y(1) (⋆)
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Initialization of the estimate (cont.)

• We have

x̂(2 | 1) = FP1H
⊤ (HP1H

⊤ + V2
)−1

y(1) (⋆)

Interpretation
Letting x̂(1 | 0) = 0 =⇒ e(1) = y(1)−Hx̂(1 | 0) = y(1)

then relation (⋆) is “compatible” with the recursive one and the
interpretation is obvious: a priori, without available data, the
more reasonable estimate is the a priori expected value.

Remark
If E[x(1)] = x̄1 ̸= 0 we just initialize by x̂(1 | 0) = x̄1 .
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Kalman predictor

The Kalman predictor architecture can be drawn as follows:

Feedback
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Remarks

• The gain matrix K(t) plays a fundamental role: the term
K(t) e(t) corrects the prediction based on a known state-space
model of the system through the observed data collected on
line.

• The Riccati equation can be solved off line, that is, the matrices
P (t) can be determined a priori and hence also the gain matrix
K(t) .

• P (t) ≥ 0, ∀ t > 1 if P (1) = P1 ≥ 0
•
(
HP1H

⊤ + V2
)
> 0 as we assumed V2 > 0 .
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267MI –Fall 2018

Lecture 13
State estimation from observed
data

END
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