Systems Dynamics

Course ID: 267MI - Fall 2018

Thomas Parisini
Gianfranco Fenu

University of Trieste
Department of Engineering and Architecture

267MI -Fall 2018

Lecture 1

Generalities: systems and models

Interconnection of Dynamic Systems

$$
\begin{aligned}
\mathcal{S}= & \left\{T=T_{1}=T_{2}, U=U_{1}=U_{2}, \Omega=\Omega_{1}=\Omega_{2}, X=X_{1} \times X_{2}, Y=Y_{1} \times Y_{2},\right. \\
& \left.\Gamma=\Gamma_{1} \times \Gamma_{2}\right\}
\end{aligned}
$$

$\underset{Y}{ }\left(x_{1}(t), x_{2}(t)\right)=\left(\varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), u(\cdot)\right), \varphi_{2}\left(t, t_{0}, \mathscr{x}_{x_{1}}^{\mathscr{x}_{1}}\left(t_{0}\right), u(\cdot)\right)\right)$

$$
\left.\rightleftharpoons \varphi_{2}\left(t, t_{0}, x_{2}\left(t_{0}\right), \eta_{1}\left(t, \varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), u(\cdot)\right)\right)\right)\right)
$$

$$
\left(y_{1}(t), y_{2}(t)\right)=\left(\eta_{1}\left(t, x_{1}(t)\right), \eta_{2}\left(t, x_{2}(t)\right)\right)
$$

Interconnection of Dynamic Systems

Feedback interconnection

General scheme:

$$
\begin{aligned}
& u_{1}(t)=\psi_{1}\left(y_{2}(t), \nu_{1}(t), t\right) \\
& u_{2}(t)=\psi_{2}\left(y_{1}(t), \nu_{2}(t), t\right)
\end{aligned}
$$

Interconnection of Dynamic Systems

Feedback interconnection

Commonly used scheme:

$$
\begin{aligned}
& \mathcal{S}=\left\{T=T_{1}=T_{2}, U=V_{1}, \Omega=\Omega_{\nu_{1}}, X=X_{1} \times X_{2}, Y=Y_{1}, \Gamma=\Gamma_{1}\right\} \\
& \left\{\begin{array}{l}
\left(x_{1}(t), x_{2}(t)\right)=\left(\varphi_{1}\left(t, t_{0}, x_{1}\left(t_{0}\right), \psi_{1}\left(\nu_{1}(\cdot), y_{2}(\cdot)\right), \varphi_{2}\left(t, t_{0}, x_{2}\left(t_{0}\right), y_{1}(\cdot)\right)\right)\right) \\
y(t)=y_{1}(t)=\eta_{1}\left(t, x_{1}(t)\right)
\end{array}\right.
\end{aligned}
$$

Feedback Interconnection: a Notable Example

A notable example of feedback interconnection is the state control law + state observer scheme (will be dealt with in the Control Theory course)

Finite-dimensional Regular Systems

A dynamic systems is regular if:

- U, Ω, X, Y, Γ are normed vector spaces
- $\varphi(\cdot, \cdot, \cdot, \cdot)$ is a continuous function with respect its arguments
- $\frac{\mathrm{d}}{\mathrm{d} t} \varphi\left(t, t_{0}, x_{0}, u(\cdot)\right)$ does exist and it is continuous for all values of the arguments where $u(\cdot)$ is continuous

The state movement $\left.\varphi \overline{\left(t, t_{0}, x_{0}\right.}, u(\cdot)\right)$ of a regular finite-dimensional dynamic system is the unique solution of a suitable vector differential equation
and

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
x\left(t_{0}\right)=x_{0}
\end{array}\right\}
$$

Finite-dimensional Discrete-time Dynamic Systems

Discrete-time dynamic systems obtain by sampling a continuous-time regular system

- U, X, Y finite-dimensional normed vector spaces
- $\Omega=\left\{u(\cdot)\right.$: piecewise constant $\left.u_{i}(\cdot), i=1, \ldots, m\right\}$
- Sampling time ΔT :

$$
\begin{aligned}
& u(k)=u(t), t_{0}+k \Delta T \leq t<t_{0}+(k+1) \Delta T, k=0,1, \ldots \\
& y(k)=y\left(t_{0}+k \Delta T\right), k=0,1, \ldots
\end{aligned}
$$

Then:

$$
\left\{\begin{array}{l}
\widetilde{x(k+1)}=f_{d}(x(k), u(k), k) \\
y(k)=g_{d}(x(k), u(k), k)
\end{array}\right.
$$

where (from composition property of φ):

$$
\begin{aligned}
& f_{d}(x(k), u(k), k)=\varphi\left(t_{0}+(k+1) \Delta T, t_{0}+k \Delta T, x(k), u(k)\right) \\
& g_{d}(x(k), u(k), k)=\eta\left(x(k), u(k), t_{0}+k \Delta T\right)
\end{aligned}
$$

An example: continuous-time model of a car suspension

From a real vehicle ...

to a simplified quarter-car model

Continuous-time model of a car suspension (cont.)

- state variables:
- vertical positions of sprung and unsprung masses vs. the corresponding steady-state values
- vertical speeds of masses
- inputs:
- ground vertical position vs. the steady-state
- active actuator force
- outputs:
- sprung mass vertical acceleration
- contact force between tyre and ground

Continuous-time model of a car suspension (cont.)

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{k_{s}}{m_{s}} & \frac{k_{s}}{m_{s}} & -\frac{c_{s}}{k_{s}} & \frac{c_{s}}{k_{s}} \\
\frac{k_{s}}{m_{u}} & -\frac{k_{s}+k_{u}}{m_{u}} & \frac{c_{s}}{m_{u}} & -\frac{c_{s}}{m_{u}}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & \frac{1}{m_{s}} \\
\frac{k_{s}}{m_{u}} & -\frac{1}{m_{u}}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
{\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{llll}
-\frac{k_{s}}{m_{s}} & \frac{k_{s}}{m_{s}} & -\frac{c_{s}}{m_{s}} & \frac{c_{s}}{m_{s}} \\
0 & k_{u} & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{cc}
0 & \frac{1}{m_{s}} \\
-k_{u} & 0
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]}
\end{array}\right.
$$

Continuous-time car suspension: an example

Assuming

$$
\begin{array}{lll}
m_{s}=400.0 \mathrm{~kg} & m_{u}=50.0 \mathrm{~kg} & c_{s}=2.010^{3} \mathrm{Ns} \mathrm{~m}^{-1} \\
k_{s}=2.010^{4} \mathrm{~N} \mathrm{~m}^{-1} & k_{u}=2.510^{5} \mathrm{~N} \mathrm{~m}^{-1} &
\end{array}
$$

the car suspension model becomes

Sampled-time car suspension models

Let's get a sampled-time description of the same dynamic system:

- How does the sampled-time description correlate with the continuous-time model?
-What happens if we increase or decrease the sampling rate? Does the sampled-time model change with the sampling time?
- Does the sampled-time model describe the behaviour of the continuous-time dynamic system for any possible choice of the sampling time value?

Using 1000 samples per second as sampling rate

$$
\left\{\begin{array}{c}
{\left[\begin{array}{l}
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=}
\end{array} \begin{array}{c}
{\left[\begin{array}{ccc}
9.9810^{-1} & 2.05 \cdot 10^{-5} & 9.98 \cdot 10^{-4} \\
1.97 \cdot 10^{-4} & 0.99 & 1.98 \cdot 10^{-5} \\
-9.89 \cdot 10^{-6} \\
-4.80 \cdot 10^{-4} \\
3.91 \cdot 10^{-1} & 3.65 \cdot 10^{-3} 8 & 9.95 \cdot 10^{-1} \\
4.91 \cdot 10^{-3} \\
\hline & 3.93 \cdot 10^{-2} & 0.96
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]} \\
+\left[\begin{array}{cc}
4.13 \cdot 10^{-6} & 1.23 \cdot 10^{-9} \\
2.47 \cdot 10^{-3} & -9.85 \cdot 10^{-9} \\
1.24 \cdot 10^{-2} & 2.44 \cdot 10^{-6} \\
4.90 & -1.95 \cdot 10^{-5}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right] \\
{\left[\begin{array}{l}
y_{1}(k) \\
y_{2}(k)
\end{array}\right]=\left[\begin{array}{l}
{\left[\begin{array}{lll}
-50.0 & 50.0 & -5.0 \\
0 & 2.5 \cdot 10^{5} & 0
\end{array}\right.} \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k
\end{array}\right]} \\
{\left[\begin{array}{cc}
0 & 2.5 \cdot 10^{-3} \\
-2.5 \cdot 10^{5} & 0
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right]}
\end{array}\right.}
\end{array}\right.
$$

Instead, using 1 sample per second as sampling rate

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1) \\
x_{3}(k+1) \\
x_{4}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
1.17 \cdot 10^{-1} & -1.76 \cdot 10^{-2} & 4.65 \cdot 10^{-3} & 1.34 \cdot 10^{-4} \\
7.75 \cdot 10^{-3} & -4.87 \cdot 10^{-3} & 1.07 \cdot 10^{-3} & 1.29 \cdot 10^{-5} \\
-1.79 \cdot 10^{-1} & -4.90 \cdot 10^{-1} & 9.94 \cdot 10^{-2} & 3.64 \cdot 10^{-4} \\
-4.84 \cdot 10^{-2} & -1.62 \cdot 10^{-2} & 2.91 \cdot 10^{-3} & -2.95 \cdot 10^{-5}
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k)
\end{array}\right]} \\
& +\left[\begin{array}{cc}
9.00 \cdot 10^{-1} & 4.41 \cdot 10^{-5} \\
9.97 \cdot 10^{-1} & -3.88 \cdot 10^{-7} \\
6.70 \cdot 10^{-1} & 8.96 \cdot 10^{-6} \\
6.46 \cdot 10^{-2} & 2.42 \cdot 10^{-6}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right] \\
& \frac{\left[\begin{array}{l}
y_{1}(k) \\
y_{2}(k)
\end{array}\right]=\frac{\left[\begin{array}{ccc}
-50.0 & 50.0 & -5.0 \\
0 & 2.5 \cdot 10^{5} & 5.0 \\
0 & 0
\end{array}\right]}{\left[+\left[\begin{array}{l}
0 \\
-2.5 \cdot 10^{5}
\end{array} \begin{array}{l}
2.5 \cdot 10^{-3} \\
x_{2}(k) \\
x_{3}(k) \\
x_{4}(k
\end{array}\right]\right.} \cdot\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right]}{\left[\begin{array}{cc}
0
\end{array}\right]}
\end{aligned}
$$

Step responses comparison

From u_{1} to y_{1}

Step responses comparison (cont.)

Step responses comparison (cont.)

Step responses comparison (cont.)

Sampled-time car suspension description (cont.)

Remarks

- by selecting different sampling rate we obtained different representations of the same continuous-time dynamic system
- sampling may heavily distort the information, giving a completely wrong discrete-time representation of the original continuous-time system: indeed the model obtained using one sample per second as the sampling rate is wrong!

Continuous-time State Equations

$\forall t \in \mathbb{R}$

$$
u_{1}(t), \ldots, u_{m}(t) \in \mathbb{R}
$$

State equations (dynamic)

$$
\left\{\begin{array}{c}
\dot{x}_{1}(t)=f_{1}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right) \\
\vdots \\
\dot{x}_{n}(t)=f_{n}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right)
\end{array}\right.
$$

Output equations (algebraic)

$$
\left\{\begin{array}{l}
y_{1}(t)=g_{1}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right) \\
\vdots \\
y_{p}(t)=g_{p}\left(x_{1}(t), \ldots, x_{n}(t), u_{1}(t), \ldots, u_{m}(t), t\right)
\end{array}\right.
$$

Continuous-time State Equations (cont.)

$$
\begin{aligned}
& u(t)=\left[\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{m}(t)
\end{array}\right] \in \mathbb{R}^{m}, y(t)=\left[\begin{array}{c}
y_{1}(t) \\
\vdots \\
y_{p}(t)
\end{array}\right] \in \mathbb{R}^{p} \\
& x(t)=\left[\begin{array}{c}
x_{1}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right] \in \mathbb{R}^{n} \leadsto \gg \\
& \xrightarrow{u(t)} \xrightarrow{\text { S }} \xrightarrow{y(t)} \\
& \left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
y(t)=g(x(t), u(t), t)
\end{array}\right.
\end{aligned}
$$

Discrete-time State Equations

State equations
(dynamic)

$$
\left\{\begin{array}{l}
x_{1}(k+1)=f_{1}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right) \\
\vdots \\
x_{n}(k+1)=f_{n}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right)
\end{array}\right.
$$

Output equations (algebraic)

$$
\left\{\begin{array}{c}
y_{1}(k)=g_{1}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right) \\
\vdots \\
y_{p}(k)=g_{p}\left(x_{1}(k), \ldots, x_{n}(k), u_{1}(k), \ldots, u_{m}(k), k\right)
\end{array}\right.
$$

Discrete-time State Equations (cont.)

$$
\begin{aligned}
& f(x, u, k)=\left[\begin{array}{c}
f_{1}(x, u, k) \\
\vdots \\
f_{n}(x, u, k)
\end{array}\right] \in \mathbb{R}^{n} \\
& f(x, u, k)=\left[\begin{array}{c}
f_{1}(x, u, k) \\
\vdots \\
f_{n}(x, u, k)
\end{array}\right] \in \mathbb{R}^{n} \\
& \left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), u(k), k)
\end{array}\right.
\end{aligned}
$$

More Definitions and Properties

- Time-invariant Dynamic Systems
- Strictly Proper Dynamic Systems

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \dot { x } (t) = f (x (t) , u (t) , \text { , } } \\
{ y (t) = g (x (t) , u (t) , ~ }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
y(t)=g(x(t), t)
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ x (k + 1) = f (x (k) , u (k) , { } _ { k }) } \\
{ y (k) = g (x (k) , u (k) , \text { , } k) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), k)
\end{array}\right.\right. \\
& \text { cosi"Anche }
\end{aligned}
$$

More Definitions and Properties (cont.)

- Forced and Free Dynamic Systems

Solo

$$
\Longrightarrow\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), t) \\
y(t)=g(x(t), t)
\end{array}\right.
$$

$$
\Longrightarrow\left\{\begin{array}{l}
x(k+1)=f(x(k), k) \\
y(k)=g(x(k), k)
\end{array}\right.
$$

It is worth noting that in case the input function $u(t), \forall t$ or input sequence $u(k), \forall k$ are known beforehand, the dynamic system can be re-written as a free one:

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t)=\widetilde{f}(x(t), t) \\
y(t)=g(x(t), u(t), t)=\widetilde{g}(x(t), t) \\
x(k+1)=f(x(k), u(k), k)=\widetilde{f}(x(k), k) \\
y(k)=g(x(k), u(k), k)=\widetilde{g}(x(k), k)
\end{array}\right.
$$

