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Interconnection of Dynamic Systems

Parallel interconnection

S = {T = T1 = T2, U = U1 = U2,Ω = Ω1 = Ω2, X = X1 ×X2, Y = Y1 × Y2,

Γ = Γ1 × Γ2}
⎧
⎪⎨

⎪⎩

(x1(t), x2(t)) = (ϕ1(t, t0, x1(t0), u(·)),ϕ2(t, t0, x1(t0), u(·)))
ϕ2(t, t0, x2(t0), η1(t,ϕ1(t, t0, x1(t0), u(·)))))

(y1(t), y2(t)) = (η1(t, x1(t)), η2(t, x2(t)))
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Interconnection of Dynamic Systems

Feedback interconnection

General scheme:

u1(t) = ψ1(y2(t), ν1(t), t)

u2(t) = ψ2(y1(t), ν2(t), t)
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Interconnection of Dynamic Systems

Feedback interconnection

Commonly used scheme:

S = {T = T1 = T2, U = V1,Ω = Ων1 , X = X1 ×X2, Y = Y1,Γ = Γ1}
{

(x1(t), x2(t)) = (ϕ1(t, t0, x1(t0),ψ1(ν1(·), y2(·)),ϕ2(t, t0, x2(t0), y1(·))))
y(t) = y1(t) = η1(t, x1(t))
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Feedback Interconnection: a Notable Example

A notable example of feedback interconnection is the state control
law + state observer scheme (will be dealt with in the Control
Theory course)
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Finite-dimensional Regular Systems

A dynamic systems is regular if:

• U,Ω, X, Y,Γ are normed vector spaces
• ϕ(·, ·, ·, ·) is a continuous function with respect its arguments

• d

dt
ϕ(t, t0, x0, u(·)) does exist and it is continuous for all values

of the arguments where u(·) is continuous

The state movement ϕ(t, t0, x0, u(·)) of a regular finite-dimensional
dynamic system is the unique solution of a suitable vector
differential equation

{
ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

and
y(t) = g(x(t), u(t), t)

DIA@UniTS – 267MI –Fall 2018 TP GF – L1–p18



Finite-dimensional Discrete-time Dynamic Systems

Discrete-time dynamic systems obtain by sampling a
continuous-time regular system

• U,X, Y finite-dimensional normed vector spaces
• Ω = {u(·) : TB2+2rBb2 +QMbi�Miui(·) , i = 1, . . . ,m}
• Sampling time ∆T :

u(k) = u(t) , t0 + k∆T ≤ t < t0 + (k + 1)∆T, k = 0, 1, . . .
y(k) = y(t0 + k∆T ), k = 0, 1, . . .

Then: {
x(k + 1) = fd(x(k), u(k), k)

y(k) = gd(x(k), u(k), k)

where (from composition property of ϕ ):

fd(x(k), u(k), k) = ϕ(t0 + (k + 1)∆T, t0 + k∆T, x(k), u(k))

gd(x(k), u(k), k) = η(x(k), u(k), t0 + k∆T )
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An example: continuous-time model of a car suspension

From a real vehicle …

to a simplified quarter-car model

quarter-car model hypotheses

• vehicle as assembly of four
decoupled parts

• each part consists of
• the sprung mass: a quarter
of the vehicle mass,
supported by a suspension
actuator, placed between
the vehicle and the tyre

• the unsprung mass: the
wheel/tyre sub-assembly

• the model allows only for
vertical motion: the vehicle
is moving forward with an
almost constant speed
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Continuous-time model of a car suspension (cont.)

• inputs:
• ground vertical position vs.
the steady-state

• active actuator force

• outputs:
• sprung mass vertical
acceleration

• contact force between tyre
and ground

• state variables:
• vertical positions of sprung
and unsprung masses vs.
the corresponding
steady-state values

• vertical speeds of masses

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(t) = zs(t)− z̄s
x2(t) = zu(t)− z̄u
x3(t) = ẋ1(t)

x4(t) = ẋ2(t)

u1(t) = zr(t)− z̄r
u2(t) = F (t)

y1(t) = ẍ1
y2(t) = ku (x2(t)− u1(t))
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Continuous-time model of a car suspension (cont.)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1
ks
ms

ks
ms

− cs
ms

cs
ms

ks
mu

−ks + ku
mu

cs
mu

− cs
mu

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡

⎢⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

0 0
0 0

0 1
ms

ks
mu

− 1
mu

⎤

⎥⎥⎥⎥⎥⎦
·
[
u1
u2

]

[
y1
y2

]
=

⎡

⎣−
ks
ms

ks
ms

− cs
ms

cs
ms

0 ku 0 0

⎤

⎦ ·

⎡

⎢⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎥⎦
+

⎡

⎢⎢⎣

0 1
ms

−ku 0

⎤

⎥⎥⎦ ·
[
u1
u2

]
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Continuous-time car suspension: an example

Assuming

ms = 400.0 kg mu = 50.0 kg cs = 2.0 103 N sm−1

ks = 2.0 104 Nm−1 ku = 2.5 105 Nm−1

the car suspension model becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

0 0 1 0
0 0 0 1.0

−50.0 50.0 −5.0 5.0
400.0 −5400.0 40.0 −40.0

⎤

⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎣

0 0
0 0
0 2.5 10−3

5.0 103 −2.0 10−2

⎤

⎥⎥⎥⎦
·
[
u1
u2

]

[
y1
y2

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 105 0 0

]
·

⎡

⎢⎢⎢⎣

x1
x2
x3
x4

⎤

⎥⎥⎥⎦
+

[
0 2.5 10−3

−2.5 105 0

]
·
[
u1
u2

]
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Sampled-time car suspension models

Let’s get a sampled-time description of the same dynamic system:

• How does the sampled-time description correlate with the
continuous-time model?

• What happens if we increase or decrease the sampling rate?
Does the sampled-time model change with the sampling time?

• Does the sampled-time model describe the behaviour of the
continuous-time dynamic system for any possible choice of the
sampling time value?
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Using 1000 samples per second as sampling rate

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

9.98 10−1 2.05 · 10−5 9.98 · 10−4 2.47 · 10−6

1.97 · 10−4 0.99 1.98 · 10−5 9.80 · 10−4

−4.89 · 10−2 3.65 · 10−38 9.95 · 10−1 4.91 · 10−3

3.91 · 10−1 −5.29 3.93 · 10−2 0.96

⎤

⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎣

x1(k)

x2(k)

x3(k)

x4(k)

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

4.13 · 10−6 1.23 · 10−9

2.47 · 10−3 −9.85 · 10−9

1.24 · 10−2 2.44 · 10−6

4.90 −1.95 · 10−5

⎤

⎥⎥⎥⎦
·
[
u1(k)

u2(k)

]

[
y1(k)

y2(k)

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 · 105 0 0

]
·

⎡

⎢⎢⎢⎣

x1(k)

x2(k)

x3(k)

x4(k

⎤

⎥⎥⎥⎦

+

[
0 2.5 · 10−3

−2.5 · 105 0

]
·
[
u1(k)

u2(k)

]
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Instead, using 1 sample per second as sampling rate

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎣

x1(k + 1)
x2(k + 1)
x3(k + 1)
x4(k + 1)

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1.17 · 10−1 −1.76 · 10−2 4.65 · 10−3 1.34 · 10−4

7.75 · 10−3 −4.87 · 10−3 1.07 · 10−3 1.29 · 10−5

−1.79 · 10−1 −4.90 · 10−1 9.94 · 10−2 3.64 · 10−4

−4.84 · 10−2 −1.62 · 10−2 2.91 · 10−3 −2.95 · 10−5

⎤

⎥⎥⎥⎦
·

⎡

⎢⎢⎢⎣

x1(k)

x2(k)

x3(k)

x4(k)

⎤

⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎣

9.00 · 10−1 4.41 · 10−5

9.97 · 10−1 −3.88 · 10−7

6.70 · 10−1 8.96 · 10−6

6.46 · 10−2 2.42 · 10−6

⎤

⎥⎥⎥⎦
·
[
u1(k)

u2(k)

]

[
y1(k)

y2(k)

]
=

[
−50.0 50.0 −5.0 5.0
0 2.5 · 105 0 0

]
·

⎡

⎢⎢⎢⎣

x1(k)

x2(k)

x3(k)

x4(k

⎤

⎥⎥⎥⎦

+

[
0 2.5 · 10−3

−2.5 · 105 0

]
·
[
u1(k)

u2(k)

]
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Step responses comparison
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Step responses comparison (cont.)
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Step responses comparison (cont.)
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Step responses comparison (cont.)
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Sampled-time car suspension description (cont.)

Remarks

• by selecting different sampling rate we obtained different
representations of the same continuous-time dynamic system

• sampling may heavily distort the information, giving a
completely wrong discrete-time representation of the original
continuous-time system: indeed the model obtained using one
sample per second as the sampling rate is wrong!
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Continuous-time State Equations

State equations
(dynamic)

Output
equations
(algebraic)

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
...

ẋn(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)

⎧
⎪⎪⎨

⎪⎪⎩

y1(t) = g1(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
...

yp(t) = gp(x1(t), . . . , xn(t), u1(t), . . . , um(t), t)
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Continuous-time State Equations (cont.)

u(t) =

⎡

⎢⎢⎣

u1(t)
...

um(t)

⎤

⎥⎥⎦ ∈ Rm , y(t) =

⎡

⎢⎢⎣

y1(t)
...

yp(t)

⎤

⎥⎥⎦ ∈ Rp

x(t) =

⎡

⎢⎢⎣

x1(t)
...

xn(t)

⎤

⎥⎥⎦ ∈ Rn

f(x, u, t) =

⎡

⎢⎢⎣

f1(x, u, t)
...

fn(x, u, t)

⎤

⎥⎥⎦ ∈ Rn

f(x, u, t) =

⎡

⎢⎢⎣

f1(x, u, t)
...

fn(x, u, t)

⎤

⎥⎥⎦ ∈ Rn

Compact form

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)
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Discrete-time State Equations

State equations
(dynamic)

Output equations
(algebraic)

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = f1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
...

xn(k + 1) = fn(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)

⎧
⎪⎪⎨

⎪⎪⎩

y1(k) = g1(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
...

yp(k) = gp(x1(k), . . . , xn(k), u1(k), . . . , um(k), k)
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Discrete-time State Equations (cont.)

u(k) =

⎡

⎢⎢⎣

u1(k)
...

um(k)

⎤

⎥⎥⎦ ∈ Rm , y(k) =

⎡

⎢⎢⎣

y1(k)
...

yp(k)

⎤

⎥⎥⎦ ∈ Rp

x(k) =

⎡

⎢⎢⎣

x1(k)
...

xn(k)

⎤

⎥⎥⎦ ∈ Rn

f(x, u, k) =

⎡

⎢⎢⎣

f1(x, u, k)
...

fn(x, u, k)

⎤

⎥⎥⎦ ∈ Rn

f(x, u, k) =

⎡

⎢⎢⎣

f1(x, u, k)
...

fn(x, u, k)

⎤

⎥⎥⎦ ∈ Rn

Compact form

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
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More Definitions and Properties

• Time-invariant Dynamic Systems
{

ẋ(t) = f(x(t), u(t), t )

y(t) = g(x(t), u(t), t )
=⇒

{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t)){
x(k + 1) = f(x(k), u(k), k )

y(k) = g(x(k), u(k), k )
=⇒

{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

• Strictly Proper Dynamic Systems
{

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), t)
{

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), k)
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More Definitions and Properties (cont.)

• Forced and Free Dynamic Systems
⎧
⎨

⎩
ẋ(t) = f(x(t), u(t) , t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), t)

y(t) = g(x(t), t)
⎧
⎨

⎩
x(k + 1) = f(x(k), u(k) , k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), k)

y(k) = g(x(k), k)

It is worth noting that in case the input function u(t), ∀ t or
input sequence u(k), ∀ k are known beforehand, the dynamic
system can be re-written as a free one:

{
ẋ(t) = f(x(t), u(t), t) = f̃(x(t), t)

y(t) = g(x(t), u(t), t) = g̃(x(t), t){
x(k + 1) = f(x(k), u(k), k) = f̃(x(k), k)

y(k) = g(x(k), u(k), k) = g̃(x(k), k)
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