
More Definitions and Properties

• Time-invariant Dynamic Systems
{

ẋ(t) = f(x(t), u(t), t )

y(t) = g(x(t), u(t), t )
=⇒

{
ẋ(t) = f(x(t), u(t))

y(t) = g(x(t), u(t)){
x(k + 1) = f(x(k), u(k), k )

y(k) = g(x(k), u(k), k )
=⇒

{
x(k + 1) = f(x(k), u(k))

y(k) = g(x(k), u(k))

• Strictly Proper Dynamic Systems
{

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), t)
{

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), k)
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More Definitions and Properties (cont.)

• Forced and Free Dynamic Systems
⎧
⎨

⎩
ẋ(t) = f(x(t), u(t) , t)

y(t) = g(x(t), u(t) , t)
=⇒

{
ẋ(t) = f(x(t), t)

y(t) = g(x(t), t)
⎧
⎨

⎩
x(k + 1) = f(x(k), u(k) , k)

y(k) = g(x(k), u(k) , k)
=⇒

{
x(k + 1) = f(x(k), k)

y(k) = g(x(k), k)

It is worth noting that in case the input function u(t), ∀ t or
input sequence u(k), ∀ k are known beforehand, the dynamic
system can be re-written as a free one:

{
ẋ(t) = f(x(t), u(t), t) = f̃(x(t), t)

y(t) = g(x(t), u(t), t) = g̃(x(t), t){
x(k + 1) = f(x(k), u(k), k) = f̃(x(k), k)

y(k) = g(x(k), u(k), k) = g̃(x(k), k)

DIA@UniTS – MI –Fall TP GF – L –p



More Definitions and Properties (cont.)

• Free Movement

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

rBi?,
x(t0) = x0 ; u(t) = 0 , ∀ t

=⇒ { (xl(t), t), t ∈ [t0, t1] }
7`22 KQp2K2Mi

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

rBi?,
x(k0) = x0 ; u(k) = 0 , ∀ k

=⇒ { (xl(k), k), k ∈ [k0, k1] }
7`22 KQp2K2Mi
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More Definitions and Properties (cont.)

• Forced Movement

ẋ(t) = f(x(t), u(t), t)

y(t) = g(x(t), u(t), t)

rBi?,
x(t0) = 0

=⇒ { (xf (t), t), t ∈ [t0, t1] }
7Q`+2/ KQp2K2Mi

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)

rBi?,
x(k0) = 0

=⇒ { (xf (k), k), k ∈ [k0, k1] }
7Q`+2/ KQp2K2Mi
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Discrete-time Systems

Consider:

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
, k > k0, x(k0) = x0

Clearly, by iterating the state equations:

x(k0) = x0
x(k0 + 1) = f(x(k0), u(k0), k0)

x(k0 + 2) = f(x(k0 + 1), u(k0 + 1), k0 + 1)
= f(f(x(k0), u(k0), k0), u(k0 + 1), k0 + 1)

x(k0 + 3) = f(x(k0 + 2), u(k0 + 2), k0 + 2)
= f(f(f(x(k0), u(k0), k0), u(k0 + 1), k0 + 1), u(k0 + 2), k0 + 2)

and so on. Hence, the state transition function has the form

x(k) = ϕ(k, k0, x0, {u(k0), . . . , u(k − 1)})

thus enhancing the causality property.
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Time-invariant Discrete-time Systems

x(k + 1) = f(x(k), u(k), k)

y(k) = g(x(k), u(k), k)
, x(k0) = x0, ua(k) = u(k), k ∈ {k0, . . . , k1}

yields the state sequence xa(k), k ∈ {k0, . . . , k1} . Let’s shift the
initial time by k̄ and the input sequence as well:

x(k0 + k̄) = x0
ub(k) = ua(k − k̄),

k ∈ {k0 + k̄, . . . , k1 + k̄}
=⇒ xb(k) = xa(k − k̄),

k ∈ {k0 + k̄, . . . , k1 + k̄}

Conventionally, we set k0 = 0 .
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Equilibrium Analysis: Equilibrium States and Outputs

• A state x̄ ∈ Rn is an equilibrium state if ∀ k0 ,
∃ {ū(k) ∈ Rm, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

• An output ȳ ∈ Rp is an equilibrium output if ∀ k0 ,
∃ {ū(k) ∈ Rm, k ≥ k0} such that

x(k0) = x̄

u(k) = ū(k), ∀ k ≥ k0
=⇒ y(k) = ȳ, ∀ k > k0

In general:

• The input sequence {ū(k) ∈ Rm, k ≥ k0} depends on the initial
time k0

• The fact that the state is of equilibrium does not imply that the
corresponding output coincides with an equilibrium output
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Equilibrium Analysis in the Time-invariant Case

In the time-invariant case, all equilibrium states can be determined
by imposing constant input sequences.

A state x̄ ∈ Rn is an equilibrium state if ∃ ū ∈ Rm such that

x(k0) = x̄

u(k) = ū, ∀ k ≥ k0
=⇒ x(k) = x̄, ∀ k > k0

All equilibrium states x̄ ∈ Rn can thus be obtained by finding all
solutions of the algebraic equation

x̄ = f(x̄, ū) , ∀ ū ∈ Rm

The following sets are also introduced:

X̄ū = {x̄ ∈ Rn : x̄ = f(x̄, ū)}
X̄ = {x̄ ∈ Rn : ∃ ū ∈ Rm bm+? i?�i x̄ = f(x̄, ū)}
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State Space Descriptions

But ... How to determine a state space description?

Recall:

State variables
Variables to be known at time t = t0 in order to be able to
determine the output y(t), t ≥ t0 from the knowledge of the input
u(t), t ≥ t0:

xi(t), i = 1, 2, . . . , n Ubi�i2 p�`B�#H2bV
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State Space Descriptions(cont.)

A ”physical” criterion
State variables can be defined as entities associated with storage
of mass, energy, etc. . . .

For example:

• Passive electrical systems: voltages on capacitors, currents on
inductors

• Translational mechanical systems: linear displacements and
velocities of each independent mass

• Rotational mechanical systems: angular displacements and
velocities of each independent inertial rotating mass

• Hydraulic systems: pressure or level of fluids in tanks
• Thermal systems: temperatures
• . . .

DIA@UniTS – MI –Fall TP GF – L –p



State Space Descriptions: Example (continuous-time)

A mechanical system

mq̈+ βq̇+ kq = f

x1 := q

x2 := q̇
=⇒ x =

[
x1
x2

]
;

⎧
⎨

⎩
ẋ1 = x2

ẋ2 = q̈ = − k

m
x1 −

β

m
x2 +

1
m
f
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State Space Descriptions: Example (continuous-time)

Electrical systems

L
diL
dt

= v −RiL − vC

C
dvC
dt

= iL

C
dvC
dt

= i− 1
R
vC − iL

L
diL
dt

= vC

x1 := iL ; x2 := vC
⎧
⎪⎨

⎪⎩

ẋ1 = −R

L
x1 −

1
L
x2 +

1
L
v

ẋ2 =
1
C
x1

⎧
⎪⎨

⎪⎩

ẋ1 =
1
L
x2

ẋ2 = − 1
C
x1 −

1
RC

x2 +
1
C
iv
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State Space Descriptions: Example (discrete-time)
Student dynamics: -years undergraduate course

• percentages of students promoted, repeaters, and dropouts are
roughly constant

• direct enrolment in nd and rd academic year is not allowed
• students cannot enrol for more than years

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1(k + 1) = β1x1(k) + u(k)

x2(k + 1) = α1x1(k) + β2x2(k)

x3(k + 1) = α2x2(k) + β3x3(k)

y(k) = α3x3(k)

• xi(k): number of students enrolled
in year i at year k, i = 1, 2, 3

• u(k): number of freshmen at year k
• y(k): number of graduates at year k
• αi: promotion rate during year i,
αi ∈ [0, 1]

• βi: failure rate during year i,
βi ∈ [0, 1]

• γi: dropout rate during year i,
γi = 1− αi − βi ≥ 0
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State Space Descriptions: Example (discrete-time)

Supply chain

• S purchases the quantity u(k) of raw material at each month k

• A fraction δ1 of raw material is discarded, a fraction α1 is
shipped to producer P

• A fraction α2 of product is sold by P to retailer R, a fraction δ2
is discarded

• Retailer R returns a fraction β3 of defective products every
month, and sells a fraction γ3 to customers
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State Space Descriptions: Example (discrete-time) (cont.)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1(k + 1) = (1− α1 − δ1)x1(k) + u(k)

x2(k + 1) = α1x1(k) + (1− α2 − δ2)x2(k)

+β3x3(k)

x3(k + 1) = α2x2(k) + (1− β3 − γ3)x3(k)

y(k) = γ3x3(k)

• k: month counter
• x1(k): raw material in
S

• x2(k): products in P

• x3(k): products in R

• y(k): products sold to
customers
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State Space Descriptions (cont.)

A ”mathematical” criterion

• Continuous-time case. An input-out differential equation
model of the system is available:

dny

dtn
= ϕ

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)

• Discrete-time case. An input-out difference equation model of
the system is available:

y(k + n) = ϕ (y(k + n− 1), y(k + n− 2), . . . , y(k), u(k), k)

Suitable state variables – without necessarily a physical meaning
– are defined to represent ”mathematically” the differential
equation or the difference equation models of the dynamic system
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State Space Descriptions (cont.)

Continuous-time case:

dny

dtn
= ϕ

(
dn−1y

dtn−1
, . . . ,

dy

dt
, y, u, t

)

Letting: ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1(t) := y(t)

x2(t) :=
dy

dt
...

xn(t) :=
dny

dtn

=⇒ x :=

⎡

⎢⎢⎢⎣

x1
x2
. . .

xn

⎤

⎥⎥⎥⎦

one gets: ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = x3
...
ẋn = ϕ(x, u, t)

y = x1
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