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- Time-invariant Dynamic Systems
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More Definitions and Properties (cont.)

- Forced and Free Dynamic Systems

It is worth noting that in case the input function u(t), Vt or
input sequence u(k), V k are known beforehand, the dynamic
system can be re-written as a free one:

(6) = F(e(t),u(t) 1) =
y<t> = g(m( ) u(t), t) = Gla(t), 1 o
y(k ) :g( (k),u(k), k) = g(z(k), k)

DIA@UNITS -  267MI -Fall 2018 7 TPGF - L1-p37



More Definitions and Properties (cont.)

* Free Movement
z(t) = f(z(¢), u(t),?)
y(t) = g(z(¢), u(?), ) . @))€ [, ta]}
with: free movement

z(k+1)= f(z(k),u(k), k)
y(k) :g(x(k)au(k)ak) — {(xl(k)ak)v k€ [kkal} }
with: free movement
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More Definitions and Properties (cont.)

- Forced Movement

z(t) = f(x(t), u(?),t)

y(t) = g(x(t),u(t),t) N {(xf(t), ), t € [to,t1] }

with: forced movement
z(to) =0

2k +1) = f(2(k), u(k), k)

y(k) = g(x(k),u(k), k) . {(xs(k), k), k € [ko, k1] }

with: forced movement
x(ko) =0
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Discrete-time Systems

Consider:

z(k +1) = f(z(k), u(k), k) .
o(B) = (o) u(k), k) 0 o elk) =m0

Clearly, by iterating the state equations:

33(]{0) = Xy
x(ko +1) = f(z(ko),u(ko), ko)
x(ko+2) = f(x(ko+ 1), ulko+1),ko+ 1)
= f(f(x(ko),u(ko), ko), u(ko + 1), ko + 1)
x(ko T 3) = f(aj(ko - 2) (]fo = 2) k() Al 2)
= f(f(f(x(ko),ulko), ko), u(no + 1), ko + 1), u(ko + 2), ko + 2)

and so on. Hence, the state transition function has the form

z(k) = o(k, ko, xo, {u(ko), ..., u(k —1)})

thus enhancing the causality property.
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Time-invariant Discrete-time Systems

, ©(ko) = xo, ug(k) = u(k), k € {ko,...,k1}

yields the state sequence z,(k), k € {ko, ...,k }. Let's shift the
initial time by k£ and the input sequence as well:

-

) — - —, @lk) =zalk ~ k)

u = Uqg(K — K), _ _
b _ _ kef{ko+k,....ki +k}
kef{ko+k,....k +k}

| 2 .
uz..'..b. ’o .E.SCb.O °®
o %o °e° - Eo.%..‘..o
ko ko + F ‘ ko ko + &

Conventionally, we set k, = 0.
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Equilibrium Analysis: Equilibrium States and Outputs

- Astate z € R” is an equilibrium state if V k,,
J{u(k) € R™ k > ko} such that
x(k’o) =X
——_qu(k) = a(k), Yk > ko

 An output 7 € R? is an equilibrium output if vk,
J{u(k) € R™ k > ko} such that

— | 2(k) =12, Vk > ko

$<l€0) =

In general:

« The input sequence {u(k) € R™,k > ko} depends on the initial
time kg

 The fact that the state is of equilibrium does not imply that the
corresponding output coincides with an equilibrium output
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Equilibrium Analysis in the Time-invariant Case

In the time-invariant case, all equilibrium states can be determined
by imposing constant input sequences.

A state 7 € R"™ is an equilibrium state if 3u € R™ such that
— x(k) ==z, Vk > ko

All equilibrium states z € R™ can thus be obtained by finding all
solutions of the algebraic equation

T=f(z,u), VueR™
The following sets are also introduced:

a={x€R": 2= f(z,u)}

X
X ={z €¢R": Ju € R™ such that Z = f(z,u)}
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State Space Descriptions

But ... How to determine a state space description?
Recall:

State variables

Variables to be known at time ¢t = ¢, in order to be able to
determine the output y(¢), t > ¢, from the knowledge of the input
u(t), t > to:

zi(t),i=1,2,...,n (state variables)
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State Space Descriptions(cont.)

A "physical” criterion
State variables can be defined as entities associated with storage
of mass, energy, etc. ...

For example:

- Passive electrical systems: voltages on capacitors, currents on
inductors

- Translational mechanical systems: linear displacements and
velocities of each independent mass

- Rotational mechanical systems: angular displacements and
velocities of each independent inertial rotating mass

- Hydraulic systems: pressure or level of fluids in tanks
- Thermal systems: temperatures
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State Space Descriptions: Example 1 (continuous-time)

A mechanical system

a)

mqg+ Bq+kq=f

T, = T2

: . k I5) 1

Ty=§=——x1— T2+ —f
m m m
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State Space Descriptions: Example 2 (continuous-time)

Electrical systems
a) i b)
—/\/X\/\—/W\—» f C
—— L ——
10 = =1,
i
d d 1
L%:v—RiL—vc C%_Z_EUC_ZL
d'UC d’I,L
C— = Tt
it " a °
Ty =1L ; Ty = VO
. R 1 i 1 . 1
N — ——&1 — = —v 1T = —I
L L L /b
. 1 . 1 1 1.
Iy = —=J5] Ty = ——T1 — =Ty + =0

C C RC C
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State Space Descriptions: Example 3 (discrete-time)

Student dynamics: 3-years undergraduate course
- percentages of students promoted, repeaters, and dropouts are
roughly constant

« direct enrolment in 2nd and 3rd academic year is not allowed
« students cannot enrol for more than 3 years
« z;(k): number of students enrolled
inyeariatyeark,i=1,2,3
* u(k): number of freshmen at year &
= Biz1 (k) + u(k) * y(k): number of graduates at year &

< a1z (k) + Brza(k) + «y: promotion rate during year i,
3 = apxr(k) + Bax3(k) «; €10,1]
| y(k) = aszs(k « (3;: failure rate during year ¢,

Bi S [07 1]
* v,;: dropout rate during year 1,
Yi=1—a;,—0;20
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State Space Descriptions: Example 4 (discrete-time)

Supply chain

S purchases the quantity u(k) of raw material at each month &

A fraction 9§, of raw material is discarded, a fraction «; is
shipped to producer P

A fraction o, of product is sold by P to retailer R, a fraction 6,
is discarded

Retailer R returns a fraction 3; of defective products every
month, and sells a fraction ~; to customers
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State Space Descriptions: Example 4 (discrete-time) (cont.)

« k: month counter

( 2k +1)= (1 —a; — 61 (k) + u(k)  x1(k): raw material in
ok + 1) = ayz1(k) + (1 — an — &)z2 (k) S
< +B3x3(k) « x,(k): productsin P
z3(k +1) = axmy(k) + (1 = B3 —3)z3(k) o 25(k): products in R
- y(k) =723 (k) » y(k): products sold to
customers
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State Space Descriptions (cont.)

A "mathematical” criterion

- Continuous-time case. An input-out differential equation
model of the system is available:

dy _ (4 Ay
dtn _90 dtn_la"'adtaya )

- Discrete-time case. An input-out difference equation model of
the system is available:

yk+n)=pyk+n—1),yk+n—-2),...,y(k),u(k), k)

Suitable state variables — without necessarily a physical meaning
— are defined to represent "mathematically” the differential
equation or the difference equation models of the dynamic system
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State Space Descriptions (cont.)

Continuous-time case:

dny dn—ly dy
2

dtm dtn=1""""" d¢
Letting:
[z (t) := %(t) :
Yy
:Uz(t) = E
< — R —
d"y
i) = =—— -
| 2n(t) =4
one gets:
(&) =2
5532 = I3

Tn = p(x,u,t)
L ¥y =1
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