More Definitions and Properties

- Time-invariant Dynamic Systems

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \dot { x } (t) = f (x (t) , u (t) , \not \subset) ^ { \measuredangle } } \\
{ y (t) = g (x (t) , u (t) , \not \subset) } \\
{ x) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t)) \\
y(t)=g(x(t), u(t))
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ x (k + 1) = f (x (k) , u (k) , \nless k) } \\
{ y (k) = g (x (k) , u (k) , \nless k) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x(k+1)=f(x(k), u(k)) \\
y(k)=g(x(k), u(k))
\end{array}\right.\right.
\end{aligned}
$$

- Strictly Proper Dynamic Systems

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \dot { x } (t) = f (x (t) , u (t) , t) } \\
{ y (t) = g (x (t) , y + t) , t) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t) \\
y(t)=g(x(t), t)
\end{array}\right.\right. \\
& \left\{\begin{array} { l }
{ x (k + 1) = f (x (k) , u (k) , k) } \\
{ y (k) = g (x (k) , \text { , } (k) , k) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x(k+1)=f(x(k), u(k), k) \\
y(k)=g(x(k), k)
\end{array}\right.\right.
\end{aligned}
$$

More Definitions and Properties (cont.)

- Forced and Free Dynamic Systems

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), \mu(k), t) \\
y(t)=g(x(t), \mu(k), t) \\
x(k+1)=f(x(k), \mu(k), k) \\
y(k)=g(x(k), \text { u(k), }, k)
\end{array} \Longrightarrow\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), t) \\
y(t)=g(x(t), t)
\end{array}\right) \Longrightarrow\left\{\begin{array}{l}
x(k+1)=f(x(k), k) \\
y(k)=g(x(k), k)
\end{array}\right)\right.
$$

It is worth noting that in case the input function $u(t), \forall t$ or input sequence $u(k), \forall k$ are known beforehand, the dynamic system can be re-written as a free one:

$$
\left\{\begin{array}{l}
\dot{x}(t)=f(x(t), u(t), t)=\widetilde{\nsim}(x(t), t) \\
y(t)=g(x(t), u(t), t)=\widetilde{g}(x(t), t) \\
x(k+1)=f(x(k), u(k), k)=\widetilde{f}(x(k), k) \\
y(k)=g(x(k), u(k), k)=\widetilde{g}(x(k), k)
\end{array}\right.
$$

More Definitions and Properties (cont.)

- Free Movement

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), t) \\
& y(t)=g(x(t), u(t), t)
\end{aligned}
$$

with:

$$
\Longrightarrow \quad\left\{\left(x_{l}(t), t\right), t \in\left[t_{0}, t_{1}\right]\right\}
$$ free movement

$$
x\left(t_{0}\right)=x_{0} ; u(t)=0, \forall t
$$

$$
x(k+1)=f(x(k), u(k), k)
$$

$$
y(k)=g(x(k), u(k), k) \quad \Longrightarrow \quad\left\{\left(x_{l}(k), k\right), k \in\left[k_{0}, k_{1}\right]\right\}
$$

with: free movement

$$
x\left(k_{0}\right)=x_{0} ; u(k)=0, \forall k
$$

More Definitions and Properties (cont.)

- Forced Movement

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t), t) \\
& y(t)=g(x(t), u(t), t)
\end{aligned}
$$ with:

$$
\Rightarrow x\left(t_{0}\right)=0
$$

$$
x(k+1)=f(x(k), u(k), k)
$$

$$
y(k)=g(x(k), u(k), k)
$$

with:

$$
x\left(k_{0}\right)=0
$$

Discrete-time Systems

Consider:

$$
\begin{aligned}
& x(k+1)=f(x(k), u(k), k) \\
& y(k)=g(x(k), u(k), k)
\end{aligned}, \quad k>k_{0}, x\left(k_{0}\right)=x_{0}
$$

Clearly, by iterating the state equations:

$$
\begin{aligned}
x\left(k_{0}\right) & =x_{0} \\
x\left(k_{0}+1\right) & =f\left(x\left(k_{0}\right), u\left(k_{0}\right), k_{0}\right) \\
x\left(k_{0}+2\right) & =f\left(x\left(k_{0}+1\right), u\left(k_{0}+1\right), k_{0}+1\right) \\
& =f\left(f\left(x\left(k_{0}\right), u\left(k_{0}\right), k_{0}\right), u\left(k_{0}+1\right), k_{0}+1\right) \\
x\left(k_{0}+3\right) & =f\left(x\left(k_{0}+2\right), u\left(k_{0}+2\right), k_{0}+2\right) \\
& =f\left(f\left(f\left(x\left(k_{0}\right), \overline{u\left(k_{0}\right)}, \overline{k_{0}}\right), u\left(u^{\prime}\right)+1\right), \overline{\left.k_{0}+1\right)}, u \overline{\left(k_{0}+2\right)}, \overline{\left.k_{0}+2\right)}\right.
\end{aligned}
$$

and so on. Hence, the state transition function has the form

$$
x(k)=\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right)
$$

thus enhancing the causality property.

Time-invariant Discrete-time Systems

$$
\begin{aligned}
& x(k+1)=f(x(k), u(k),\{ \\
& y(k)=g\left(x(k), u(k), k_{x}\right)
\end{aligned}, x\left(k_{0}\right)=x_{0}, u_{a}(k)=u(k), k \in\left\{k_{0}, \ldots, k_{1}\right\}
$$

yields the state sequence $x_{a}(k), k \in\left\{k_{0}, \ldots, k_{1}\right\}$. Let's shift the initial time by \bar{k} and the input sequence as well:

Conventionally, we set $k_{0}=0$.

Equilibrium Analysis: Equilibrium States and Outputs

- A state $\bar{x} \in \mathbb{R}^{n}$ is an equilibrium state if $\forall k_{0}$, $\exists\left\{\bar{u}(k) \in \mathbb{R}^{m}, k \geq k_{0}\right\}$ such that

$$
\begin{aligned}
& \nabla^{\nabla} x\left(k_{0}\right)=\bar{x} \\
& \nabla^{u(k)}=\bar{u}(k), \forall k \geq k_{0}
\end{aligned} \Longrightarrow x(k)=\bar{x}, \forall k>k_{0}
$$

- An output $\bar{y} \in \mathbb{R}^{p}$ is an equilibrium output if $\forall k_{0}$, $\exists\left\{\bar{u}(k) \in \mathbb{R}^{m}, k \geq k_{0}\right\}$ such that

$$
\begin{aligned}
& x\left(k_{0}\right)=\bar{x} \\
& u(k)=\bar{u}(k), \forall k \geq k_{0}
\end{aligned} \Longrightarrow y(k)=\bar{y}, \forall k>k_{0}
$$

In general:

- The input sequence $\left\{\bar{u}(k) \in \mathbb{R}^{m}, k \geq k_{0}\right\}$ depends on the initial time k_{0}
- The fact that the state is of equilibrium does not imply that the corresponding output coincides with an equilibrium output

Equilibrium Analysis in the Time-invariant Case

In the time-invariant case, all equilibrium states can be determined by imposing constant input sequences.

A state $\bar{x} \in \mathbb{R}^{n}$ is an equilibrium state if $\exists \bar{u} \in \mathbb{R}^{m}$ such that

$$
\begin{aligned}
& x\left(k_{0}\right)=\bar{x} \\
& u(k)=\bar{u}, \forall k \geq k_{0}
\end{aligned} \Longrightarrow x(k)=\bar{x}, \forall k>k_{0}
$$

All equilibrium states $\bar{x} \in \mathbb{R}^{n}$ can thus be obtained by finding all solutions of the algebraic equation

$$
\bar{x}=f(\bar{x}, \bar{u}), \quad \forall \bar{u} \in \mathbb{R}^{m}
$$

The following sets are also introduced:

$$
\begin{aligned}
& \bar{X}_{\bar{u}}=\left\{\bar{x} \in \mathbb{R}^{n}: \bar{x}=f(\bar{x}, \bar{u})\right\} \\
& \bar{X}=\left\{\bar{x} \in \mathbb{R}^{n}: \exists \bar{u} \in \mathbb{R}^{m} \text { such that } \bar{x}=f(\bar{x}, \bar{u})\right\}
\end{aligned}
$$

State Space Descriptions

But ... How to determine a state space description?

Recall:

State variables

Variables to be known at time $t=t_{0}$ in order to be able to determine the output $y(t), t \geq t_{0}$ from the knowledge of the input $u(t), t \geq t_{0}$:

$$
x_{i}(t), i=1,2, \ldots, n \quad \text { (state variables) }
$$

State Space Descriptions(cont.)

A "physical" criterion

State variables can be defined as entities associated with storage of mass, energy, etc. ...

For example:

- Passive electrical systems: voltages on capacitors, currents on inductors
- Translational mechanical systems: linear displacements and velocities of each independent mass
- Rotational mechanical systems: angular displacements and velocities of each independent inertial rotating mass
- Hydraulic systems: pressure or level of fluids in tanks
- Thermal systems: temperatures

State Space Descriptions: Example 1 (continuous-time)

A mechanical system

$$
m \ddot{q}+\beta \dot{q}+k q=f
$$

$$
\begin{aligned}
& x_{1}:=q \\
& x_{2}:=\dot{q}
\end{aligned} \quad \Longrightarrow \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] ; \quad\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=\ddot{q}=-\frac{k}{m} x_{1}-\frac{\beta}{m} x_{2}+\frac{1}{m} f
\end{array}\right.
$$

State Space Descriptions: Example 2 (continuous-time)

Electrical systems

$$
\begin{aligned}
& L \frac{d i_{L}}{d t}=v-R i_{L}-v_{C} \\
& \text { b) } \\
& C \frac{d v_{C}}{d t}=i_{L} \\
& L \frac{d i_{L}}{d t}=v_{C} \\
& x_{1}:=i_{L} ; x_{2}:=v_{C} \\
& \left\{\begin{array}{l}
\dot{x}_{1}=-\frac{R}{L} x_{1}-\frac{1}{L} x_{2}+\frac{1}{L} v \\
\dot{x}_{2}=\frac{1}{C} x_{1}
\end{array}\right. \\
& \left\{\begin{aligned}
\dot{x}_{1} & =\frac{1}{L} x_{2} \\
\dot{x}_{2} & =-\frac{1}{C} x_{1}-\frac{1}{R C} x_{2}+\frac{1}{C} i v
\end{aligned}\right.
\end{aligned}
$$

State Space Descriptions: Example 3 (discrete-time)

Student dynamics: 3-years undergraduate course

- percentages of students promoted, repeaters, and dropouts are roughly constant
- direct enrolment in 2nd and 3rd academic year is not allowed
- students cannot enrol for more than 3 years
- $x_{i}(k)$: number of students enrolled in year i at year $k, i=1,2,3$
- $u(k)$: number of freshmen at year k

$$
\left\{\begin{array}{l}
x_{1}(k+1)=\beta_{1} x_{1}(k)+u(k) \\
x_{2}(k+1)=\alpha_{1} x_{1}(k)+\beta_{2} x_{2}(k) \\
x_{3}(k+1)=\alpha_{2} x_{2}(k)+\beta_{3} x_{3}(k) \\
y(k)=\alpha_{3} x_{3}(k)
\end{array}\right.
$$

- $y(k)$: number of graduates at year k
- α_{i} : promotion rate during year i,
$\alpha_{i} \in[0,1]$
- β_{i} : failure rate during year i, $\beta_{i} \in[0,1]$
- γ_{i} : dropout rate during year i, $\gamma_{i}=1-\alpha_{i}-\beta_{i} \geq 0$

State Space Descriptions: Example 4 (discrete-time)

Supply chain

- S purchases the quantity $u(k)$ of raw material at each month k
- A fraction δ_{1} of raw material is discarded, a fraction α_{1} is shipped to producer P
- A fraction α_{2} of product is sold by P to retailer R, a fraction δ_{2} is discarded
- Retailer R returns a fraction β_{3} of defective products every month, and sells a fraction γ_{3} to customers

State Space Descriptions: Example 4 (discrete-time) (cont.)

- k : month counter

$$
\left\{\begin{array}{l}
x_{1}(k+1)=\left(1-\alpha_{1}-\delta_{1}\right) x_{1}(k)+u(k) \\
x_{2}(k+1)=\alpha_{1} x_{1}(k)+\left(1-\alpha_{2}-\delta_{2}\right) x_{2}(k) \\
\quad+\beta_{3} x_{3}(k) \\
x_{3}(k+1)=\alpha_{2} x_{2}(k)+\left(1-\beta_{3}-\gamma_{3}\right) x_{3}(k) \\
y(k)=\gamma_{3} x_{3}(k)
\end{array}\right.
$$

- $x_{1}(k)$: raw material in S
- $x_{2}(k):$ products in P
- $x_{3}(k)$: products in R
- $y(k)$: products sold to customers

State Space Descriptions (cont.)

A "mathematical" criterion

- Continuous-time case. An input-out differential equation model of the system is available:

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} t^{n}}=\varphi\left(\frac{\mathrm{d}^{n-1} y}{\mathrm{~d} t^{n-1}}, \ldots, \frac{\mathrm{~d} y}{\mathrm{~d} t}, y, u, t\right)
$$

- Discrete-time case. An input-out difference equation model of the system is available:

$$
y(k+n)=\varphi(y(k+n-1), y(k+n-2), \ldots, y(k), u(k), k)
$$

Suitable state variables - without necessarily a physical meaning

- are defined to represent "mathematically" the differential equation or the difference equation models of the dynamic system

State Space Descriptions (cont.)

Continuous-time case:

$$
\frac{\mathrm{d}^{n} y}{\mathrm{~d} t^{n}}=\varphi\left(\frac{\mathrm{d}^{n-1} y}{\mathrm{~d} t^{n-1}}, \ldots, \frac{\mathrm{~d} y}{\mathrm{~d} t}, y, u, t\right)
$$

Letting:

$$
\left\{\begin{array}{l}
x_{1}(t):=y(t) \\
x_{2}(t):=\frac{\mathrm{d} y}{\mathrm{~d} t} \\
\vdots \\
x_{n}(t):=\frac{\mathrm{d}^{n} y}{\mathrm{~d} t^{n}}
\end{array} \quad \Longrightarrow \quad x:=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]\right.
$$

one gets:

$$
\left\{\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=x_{3} \\
\vdots \\
\dot{x}_{n}=\varphi(x, u, t) \\
y=x_{1}
\end{array}\right.
$$

