Systems Dynamics

Course ID: 267MI - Fall 2019

Thomas Parisini
Gianfranco Fenu

University of Trieste
Department of Engineering and Architecture

267MI -Fall 2019

Lecture 2
State and Output Movement of
Linear Discrete-Time Systems

Lecture 2: Table of Contents

2. State and Output Movement of Linear Discrete-Time Systems

2.1 General State-Space Solution
2.2 State-Space Solution: the Time-Invariant Case
2.3 Input-Output Dynamic Description for Linear Systems
2.4 Determination of the State/Output Movement
2.4.1 Response Modes
2.4.2 Qualitative Behaviour of Response Modes
2.5 External Description of LTI Dynamic Systems: Transfer Function
2.6 Determination of Response Modes: Examples

General State-Space Solution

General State-Space Solution

Consider a linear discrete-time free (no inputs) dynamic system:

$$
x(k+1)=A(k) x(k), \quad x\left(k_{0}\right)=x_{0}
$$

Clearly, $x(k), k>k_{0}$ can be determined by iterating the state equation:

$$
\begin{aligned}
& x\left(k_{0}\right)=x_{0} \\
& x\left(k_{0}+1\right)=A\left(k_{0}\right) x\left(k_{0}\right) \\
& x\left(k_{0}+2\right)=A\left(k_{0}+1\right) x\left(k_{0}+1\right)=A\left(k_{0}+1\right) A\left(k_{0}\right) x\left(k_{0}\right) \\
& \quad \vdots \\
& x(k)=A(k-1) A(k-2) A(k-3) \cdots A\left(k_{0}+1\right) A\left(k_{0}\right) x\left(k_{0}\right)
\end{aligned}
$$

Hence:

$$
x(k)=\varphi\left(k, k_{0}, x_{0}\right)=\Phi\left(k, k_{0}\right) x_{0}
$$

where the discrete-time state-transition matrix is:

$$
\Phi\left(k, k_{0}\right)=\prod_{j=k_{0}}^{k-1} A(j), \quad k>k_{0} ; \quad \Phi\left(k_{0}, k_{0}\right)=I
$$

General State-Space Solution (cont.)

Now, consider a linear discrete-time dynamic system with inputs:

$$
x(k+1)=A(k) x(k)+B(k) u(k), \quad x\left(k_{0}\right)=x_{0}
$$

Clearly:

$$
\begin{aligned}
& x\left(k_{0}\right)=x_{0} \\
& x\left(k_{0}+1\right)=A\left(k_{0}\right) x\left(k_{0}\right)+B\left(k_{0}\right) u\left(k_{0}\right) \\
& x\left(k_{0}+2\right)=A\left(k_{0}+1\right) x\left(k_{0}+1\right)+B\left(k_{0}+1\right) u\left(k_{0}+1\right) \\
& \quad=A\left(k_{0}+1\right)\left[A\left(k_{0}\right) x\left(k_{0}\right)+B\left(k_{0}\right) u\left(k_{0}\right)\right]+B\left(k_{0}+1\right) u\left(k_{0}+1\right) \\
& \quad=A\left(k_{0}+1\right) A\left(k_{0}\right) x\left(k_{0}\right)+A\left(k_{0}+1\right) B\left(k_{0}\right) u\left(k_{0}\right)+B\left(k_{0}+1\right) u\left(k_{0}+1\right) \\
& x\left(k_{0}+3\right)=A\left(k_{0}+2\right) x\left(k_{0}+2\right)+B\left(k_{0}+2\right) u\left(k_{0}+2\right) \\
& \quad=A\left(k_{0}+2\right) A\left(k_{0}+1\right) A\left(k_{0}\right) x\left(k_{0}\right)+A\left(k_{0}+2\right) A\left(k_{0}+1\right) B\left(k_{0}\right) u\left(k_{0}\right) \\
& \quad+A\left(k_{0}+2\right) B\left(k_{0}+1\right) u\left(k_{0}+1\right)+B\left(k_{0}+2\right) u\left(k_{0}+2\right)
\end{aligned}
$$

General State-Space Solution (cont.)

Therefore, using

$$
\Phi\left(k, k_{0}\right)=\prod_{j=k_{0}}^{k-1} A(j), \quad k>k_{0} ; \quad \Phi\left(k_{0}, k_{0}\right)=I
$$

one gets

$$
\begin{aligned}
x(k) & =\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right) \\
& =\Phi\left(k, k_{0}\right) x_{0}+\sum_{j=k_{0}}^{k-1} \Phi(k, j+1) B(j) u(j), \quad k>k_{0}
\end{aligned}
$$

which expresses the general solution providing the state movement of a linear discrete-time dynamic system.

The determination of the state transition matrix $\Phi\left(k, k_{0}\right)$ is clearly very important.

General State-Space Solution (cont.)

- Free state movement. Setting $u(k)=0, \forall k \geq k_{0}$ gives:

$$
x(k)=\varphi\left(k, k_{0}, x_{0}, 0\right)=\varphi_{L}(k)=\Phi\left(k, k_{0}\right) x_{0}, \quad k>k_{0}
$$

- Forced state movement. Setting $x_{0}=0$ gives:

$$
\begin{aligned}
x(k) & =\varphi\left(k, k_{0}, 0,\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right)=\varphi_{F}(k) \\
& =\sum_{j=k_{0}}^{k-1} \Phi(k, j+1) B(j) u(j), \quad k>k_{0}
\end{aligned}
$$

The total state movement is thus given by:

$$
\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right)=\varphi_{L}(k)+\varphi_{F}(k)
$$

which is a direct consequence of the linearity of the dynamic system.

General State-Space Solution (cont.)

Now, let us add the output equation:

$$
\left\{\begin{array}{l}
x(k+1)=A(k) x(k)+B(k) u(k), \quad x\left(k_{0}\right)=x_{0} \\
y(k)=C(k) x(k)+D(k) u(k)
\end{array}\right.
$$

one gets:

$$
\begin{aligned}
y(k)= & C(k) \Phi\left(k, k_{0}\right) x_{0} \\
& +\sum_{j=k_{0}}^{k-1} C(k) \Phi(k, j+1) B(j) u(j)+D(k) u(k), \quad k>k_{0}
\end{aligned}
$$

- Free output movement. Setting $u(k)=0, \forall k \geq k_{0}$ gives:

$$
y(k)=y_{L}(k)=C(k) \Phi\left(k, k_{0}\right) x_{0}, k>k_{0}
$$

- Forced output movement. Setting $x_{0}=0$ gives:

$$
y(k)=y_{F}(k)=\sum_{j=k_{0}}^{k-1} C(k) \Phi(k, j+1) B(j) u(j)+D(k) u(k), k>k_{0}
$$

The total output movement is thus given by:

$$
y(k)=y_{L}(k)+y_{F}(k)
$$

State-Space Solution: the
 Time-Invariant Case

State-Space Solution: the Time-Invariant case

- In the time-invariant case, matrices $A(k), B(k), C(k), D(k)$ do not depend on time-index k, that is they are constant matrices A, B, C, D.
- Hence, when considering a linear discrete-time free (no inputs) time-invariant dynamic system:

$$
x(k+1)=A x(k), \quad x\left(k_{0}\right)=x_{0}
$$

one gets:

$$
x(k)=\varphi\left(k, k_{0}, x_{0}\right)=\Phi\left(k, k_{0}\right) x_{0}
$$

where the discrete-time state-transition matrix now takes on the form

$$
\Phi\left(k, k_{0}\right)=\prod_{j=k_{0}}^{k-1} A=A^{\left(k-k_{0}\right)}, \quad k>k_{0} ; \quad \Phi\left(k_{0}, k_{0}\right)=I
$$

- With some abuse of notation, we denote $\Phi\left(k-k_{0}\right)$ to highlight the dependence on $\left(k-k_{0}\right)$ instead of k and k_{0} separately.

State-Space Solution: the Time-Invariant case (cont.)

Now, consider a linear discrete-time time-invariant dynamic system with inputs:

$$
x(k+1)=A x(k)+B u(k), \quad x\left(k_{0}\right)=x_{0}
$$

Therefore, using

$$
\Phi\left(k-k_{0}\right)=A^{\left(k-k_{0}\right)}, \quad k>k_{0} ; \quad \Phi\left(k_{0}, k_{0}\right)=I
$$

one gets

$$
\begin{aligned}
x(k) & =\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right) \\
& =A^{\left(k-k_{0}\right)} x_{0}+\sum_{j=k_{0}}^{k-1} A^{k-(j+1)} B u(j), \quad k>k_{0}
\end{aligned}
$$

The explicit form $\Phi\left(k-k_{0}\right)=A^{\left(k-k_{0}\right)}$ will be used later on to determine the state and output evolution over time in closed-form.

State-Space Solution: the Time-Invariant case (cont.)

- Free state movement. Setting $u(k)=0, \forall k \geq k_{0}$ gives:

$$
x(k)=\varphi\left(k, k_{0}, x_{0}, 0\right)=\varphi_{L}(k)=A^{\left(k-k_{0}\right)} x_{0}, \quad k>k_{0}
$$

- Forced state movement. Setting $x_{0}=0$ gives:

$$
\begin{aligned}
x(k) & =\varphi\left(k, k_{0}, 0,\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right)=\varphi_{F}(k) \\
& =\sum_{j=k_{0}}^{k-1} A^{k-(j+1)} B u(j), \quad k>k_{0}
\end{aligned}
$$

The total state movement is thus given by:

$$
\varphi\left(k, k_{0}, x_{0},\left\{u\left(k_{0}\right), \ldots, u(k-1)\right\}\right)=\varphi_{L}(k)+\varphi_{F}(k)
$$

which is a direct consequence of the linearity of the dynamic system.

State-Space Solution: the Time-Invariant case (cont.)

Now, by adding the output equation:

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k), \quad x\left(k_{0}\right)=x_{0} \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

one gets:

$$
\begin{aligned}
y(k)= & C A^{\left(k-k_{0}\right)} x_{0} \\
& +\sum_{j=k_{0}}^{k-1} C A^{k-(j+1)} B u(j)+D u(k), \quad k>k_{0}
\end{aligned}
$$

- Free output movement. Setting $u(k)=0, \forall k \geq k_{0}$ gives:

$$
y(k)=y_{L}(k)=C A^{\left(k-k_{0}\right)} x_{0}, k>k_{0}
$$

- Forced output movement. Setting $x_{0}=0$ gives:

$$
y(k)=y_{F}(k)=\sum_{j=k_{0}}^{k-1} C A^{k-(j+1)} B u(j)+D u(k), k>k_{0}
$$

The total output movement is thus given by:

$$
y(k)=y_{L}(k)+y_{F}(k)
$$

Input-Output Dynamic Description for Linear Systems

Input-Output Dynamic Description of Linear Systems

Preliminaries

Discrete-time unit impulse sequence

$$
\delta(k)= \begin{cases}0, & k \neq 0, k \in \mathbb{Z} \\ 1, & k=0\end{cases}
$$

Discrete-time unit step sequence

$$
\begin{aligned}
& 1(k)=\left\{\begin{array}{ll}
0, & k<0, k \in \mathbb{Z} \\
1, & k \geq 0, k \in \mathbb{Z}
\end{array} \quad \begin{array}{ll}
\longrightarrow & 1
\end{array} \quad \begin{array}{ll}
\sum_{j=0}^{\infty} \delta(k-j)=1(k)-1(k-1) ; & k \geq 0 \\
0, & k<0
\end{array}\right.
\end{aligned}
$$

Moreover, an arbitrary sequence $\{x(k)\}$ can be expressed as

$$
x(k)=\sum_{j=-\infty}^{\infty} x(j) \delta(k-j)
$$

Input-Output Dynamic Description of Linear Systems (cont.)

- Consider a linear discrete-time system with scalar input and output

- Moreover, consider the "external" input/output relationship

$$
y(k)=\sum_{j=-\infty}^{\infty} h(k, j) u(j) \quad(\star)
$$

Assumption. The sequences $\{h(k, j)\}$ for any given k and $\{u(j)\}$ are such that the relationship $(*)$ is well-defined. For example, $\{h(k, j)\} \in l_{2}$ and $\{u(j)\} \in l_{2}$.

- Under the above assumption, relationship (\star) is linear.

Input-Output Dynamic Description of Linear Systems (cont.)

- Denote by $h(k, j)$ the output response at time k produced by a unit impulse $\delta(j)$ applied at time j
- By linearity, the output response at time k produced by a impulse of amplitude $u(j)$ applied at time j is $h(k, j) u(j)$
- By linearity, the output response at time k produced by two impulses of amplitude $u\left(j_{1}\right)$ and $u\left(j_{2}\right)$ applied at times j_{1} and j_{2}, respectively, is $h\left(k, j_{1}\right) u\left(j_{1}\right)+h\left(k, j_{2}\right) u\left(j_{2}\right)$

Input-Output Model

At time k, the system output $y(k)$ produced by the input sequence $\{u(j)\}$ is given by

$$
y(k)=\sum_{j=-\infty}^{\infty} h(k, j) u(j)
$$

where $h(k, j)$ denotes the output response at time k produced by a unit impulse $\delta(k-j)$ applied at time j

Input-Output Dynamic Description of Linear Systems (cont.)

Properties

- Due to causality, the response to an input sequence has to be identically zero before the input sequence is applied. Hence:

$$
h(k, j)=0, \quad \forall j, \forall k<j
$$

Hence:

$$
\begin{gathered}
y(k)=\sum_{j=-\infty}^{k} h(k, j) u(j) \\
\Longrightarrow y(k)=\sum_{j=-\infty}^{k_{0}-1} h(k, j) u(j)+\sum_{j=k_{0}}^{k} h(k, j) u(j) \\
=Y\left(k ; k_{0}-1\right)+\sum_{j=k_{0}}^{k} h(k, j) u(j)
\end{gathered}
$$

Input-Output Dynamic Description of Linear Systems (cont.)

- The system is at rest at time k_{0} if

$$
u(k)=0, \forall k \geq k_{0} \quad \Longrightarrow \quad y(k)=0, \forall k \geq k_{0}
$$

and this implies $Y\left(k ; k_{0}-1\right)=0$.

- Hence, if the system is at rest at time k_{0}, it follows that

$$
y(k)=\sum_{j=k_{0}}^{\infty} h(k, j) u(j)
$$

and due to causality, one gets

$$
y(k)=\sum_{j=k_{0}}^{k} h(k, j) u(j)
$$

Input-Output Dynamic Description of Linear Systems (cont.)

- If the system is time-invariant, denoting by $\{h(k, 0)\}$ the response to $\{\delta(k)\}$, it follows that $\{h(k-j, 0)\}$ is the response to $\{\delta(k-j)\}$
- Letting (with some abuse of notation)

$$
h(k-j):=h(k-j, 0)
$$

one gets the well-known convolution formula:

$$
y(k)=u(k) * h(k)=\sum_{j=-\infty}^{\infty} h(k-j) u(j)
$$

or equivalently (via a change of variables)

$$
y(k)=h(k) * u(k)=\sum_{i=-\infty}^{\infty} h(i) u(k-i)
$$

Input-Output Dynamic Description of Linear Systems (cont.)

- Consider a linear discrete-time system with vector input and output

- The scalar case (with all properties) can be generalised as:

$$
\begin{gathered}
y(k)=\sum_{j=-\infty}^{\infty} H(k, j) u(j) \\
H(k, j)=\left[\begin{array}{cccc}
h_{11}(k, j) & h_{12}(k, j) & \cdots & h_{1 m}(k, j) \\
h_{21}(k, j) & h_{22}(k, j) & \cdots & h_{2 m}(k, j) \\
\cdots & \cdots & \cdots & \\
h_{p 1}(k, j) & h_{p 2}(k, j) & \cdots & h_{p m}(k, j)
\end{array}\right]
\end{gathered}
$$

where $h_{r s}(k, j)$ denotes the r-th component of the response at time k produced by a unit impulse applied at time j on the s-th component of the input, while all other input components are set to zero.

Relationship between State-Space and Input-Output Dynamic Descriptions

Consider a state-space description with initial state set to zero:

$$
\left\{\begin{array}{l}
x(k+1)=A(k) x(k)+B(k) u(k), \quad x\left(k_{0}\right)=0 \\
y(k)=C(k) x(k)+D(k) u(k)
\end{array}\right.
$$

Recalling that

$$
y(k)=\sum_{j=k_{0}}^{k-1} C(k) \Phi(k, j+1) B(j) u(j)+D(k) u(k), \quad k>k_{0}
$$

one gets immediately

$$
H(k, j)= \begin{cases}C(k) \Phi(k, j+1) B(j), & k>j \\ D(k) & k=j \\ 0 & k<j\end{cases}
$$

which, in the time-invariant case, becomes

$$
H(k-j)= \begin{cases}C A^{k-(j+1)} B, & k>j \\ D & k=j \\ 0 & k<j\end{cases}
$$

Determination of the

State/Output Movement

Determination of the State/Output Movement

Response Modes

Determination of the State/Output Movement

Recall that in the general time-varying case one has:

$$
\left\{\begin{array}{l}
x(k+1)=A(k) x(k)+B(k) u(k), \quad x\left(k_{0}\right)=x_{0} \\
y(k)=C(k) x(k)+D(k) u(k)
\end{array}\right.
$$

one gets:

$$
\begin{aligned}
y(k)= & C(k) \Phi\left(k, k_{0}\right) x_{0} \\
& +\sum_{j=k_{0}}^{k-1} C(k) \Phi(k, j+1) B(j) u(j)+D(k) u(k), \quad k>k_{0}
\end{aligned}
$$

where

$$
\Phi\left(k, k_{0}\right)=\prod_{j=k_{0}}^{k-1} A(j), \quad k>k_{0} ; \quad \Phi\left(k_{0}, k_{0}\right)=I
$$

is the state-transition matrix.

Determination of the State/Output Movement (cont.)

In the time-invariant case, recall that the solution specialises as follows:

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k), \quad x\left(k_{0}\right)=x_{0} \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

one gets:

$$
\begin{aligned}
y(k)= & C A^{\left(k-k_{0}\right)} x_{0} \\
& +\sum_{j=k_{0}}^{k-1} C A^{k-(j+1)} B u(j)+D u(k), \quad k>k_{0}
\end{aligned}
$$

where the state-transition matrix now is given by:

$$
\Phi\left(k-k_{0}\right)=A^{\left(k-k_{0}\right)}, \quad k>k_{0} ; \quad \Phi\left(k_{0}, k_{0}\right)=I
$$

Response Modes

- Without loss of generality we let $k_{0}=0$ and we "expand" matrix $A^{k-k_{0}}=A^{k}$ in "matrix partial fractions".
- Clearly

$$
\operatorname{det}(z I-A)=\prod_{i=1}^{\sigma}\left(z-\lambda_{i}\right)^{n_{i}}
$$

where $\lambda_{1}, \ldots, \lambda_{\sigma}$ are the distinct eigenvalues of A and n_{i} is the algebraic multiplicity of such eigenvalues.

- Of course $\sum_{i=1}^{\sigma} n_{i}=n$.
- It can be shown that:

$$
A^{k}=\sum_{i=1}^{\sigma}\left[A_{i 0} \lambda_{i}^{k} 1(k)+\sum_{l=0}^{n_{i}-1} A_{i l} k(k-1) \cdots(k-l+1) \lambda_{i}^{k-l} 1(k-l)\right]
$$

where

$$
A_{i l}=\frac{1}{l!} \frac{1}{\left(n_{i}-1-l\right)!} \lim _{z \rightarrow \lambda_{i}}\left\{\frac{d^{n_{i}-1-l}}{d z^{n_{i}-1-l}}\left[\left(z-\lambda_{i}\right)^{n_{i}}(z I-A)^{-1}\right]\right\}
$$

Response Modes (cont.)

Hence:

- A^{k} can be expressed as a sum of terms $A_{i l} k!\binom{k}{l} \lambda_{i}^{k}$ which are called Response Modes
- If an eigenvalue λ_{i} has algebraic multiplicity n_{i}, then, in general, n_{i} response modes

$$
A_{i l} k!\binom{k}{l} \lambda_{i}^{k}, l=0,1, \ldots, n_{i}-1
$$

can be associated to λ_{i}.

- When all eigenvalues of A are distinct, one has $\sigma=n ; n_{i}=1, i=1, \ldots, n$ and

$$
\begin{gathered}
A^{k}=\sum_{i=1}^{n} A_{i} \lambda_{i}^{k} \\
A_{i}=\lim _{z \rightarrow \lambda_{i}}\left[\left(z-\lambda_{i}\right)(z I-A)^{-1}\right]
\end{gathered}
$$

with

Response Modes: A different Characterisation

In the special case of distinct eigenvalues of A :

- In such a case: $\operatorname{det}(z I-A)=\prod_{i=1}^{n}\left(z-\lambda_{i}\right)$ and $A^{k}=\sum_{i=1}^{n} A_{i} \lambda_{i}^{k}$
- It can be shown that $A_{i}=v_{i} \tilde{v}_{i}^{\top}$ where:
- $\left(\lambda_{i} I-A\right) v_{i}=0$: $\quad v_{i}$ right eigenvector associated with λ_{i}
- $\tilde{v}_{i}^{\top}\left(\lambda_{i} I-A\right)=0: \quad \tilde{v}_{i}^{\top}$ left eigenvector associated with λ_{i}

In fact:
$Q:=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right] \Longrightarrow P=Q^{-1}=\left[\begin{array}{c}\tilde{v}_{1}^{\top} \\ \vdots \\ \tilde{v}_{n}^{\top}\end{array}\right] ; \tilde{v}_{i}^{\top} v_{j}=\left\{\begin{array}{cc}1 & i=j \\ 0 & i \neq j\end{array}\right.$
and then

$$
\begin{aligned}
& (z I-A)^{-1}=\left[z I-Q \operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{n}\right] Q^{-1}\right]^{-1} \\
& \quad=Q\left[z I-\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{n}\right]\right]^{-1} Q^{-1} \\
& \quad=Q \operatorname{diag}\left[\left(z-\lambda_{1}\right)^{-1}, \ldots,\left(z-\lambda_{n}\right)^{-1}\right] Q^{-1}=\sum_{i=1}^{n} v_{i} \tilde{v}_{i}^{\top}\left(z-\lambda_{i}\right)^{-1}
\end{aligned}
$$

Response Modes: A different Characterisation (cont.)

- If the initial state vector x_{0} is "parallel" to eigenvector v_{j} of A, then the only response mode showing up int the state movement is λ_{j}^{k} :

$$
x_{0}=\alpha v_{j} \Longrightarrow x(k)=A^{k} x_{0}=v_{1} \tilde{v}_{1}^{\top} x_{0} \lambda_{1}^{k}+\cdots+v_{n} \tilde{v}_{n}^{\top} x_{0} \lambda_{n}^{k}=\alpha v_{j} \lambda_{j}^{k}
$$

Example: consider $A=\left[\begin{array}{cc}-1 & 2 \\ 0 & 1\end{array}\right] ; \lambda_{1}=-1, \lambda_{2}=1$
$\Longrightarrow Q=\left[v_{1} \mid v_{2}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right], Q^{-1}=\left[\begin{array}{c}\tilde{v}_{1}^{\top} \\ \tilde{v}_{2}^{\top}\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
$A^{k}=v_{1} \tilde{v}_{1}^{\top} \lambda_{1}^{k}+v_{2} \tilde{v}_{2}^{\top} \lambda_{2}^{k}=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right](-1)^{k}+\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right] 1^{k}$
and thus, if $x_{0}=\alpha v_{1}=\alpha\left[\begin{array}{l}1 \\ 0\end{array}\right]$ then the response mode 1^{k} does
not show up in the free state response starting from such an initial state x_{0}

Calculation of A^{k} by Similarity Transformation

Consider:

- $x(k+1)=A x(k), x(0)=x_{0} \Longrightarrow x(k)=A^{k} x_{0}$
- $T \in \mathbb{R}^{n \times n}, \operatorname{det}(T) \neq 0 \Longrightarrow x=T \hat{x}, \hat{x}=T^{-1} x$

Hence $\hat{x}(k+1)=T^{-1} A x(k)=T^{-1} A T \hat{x}(k), \hat{x}_{0}=T^{-1} x_{0}$ which yields

$$
\hat{x}(k)=\left(T^{-1} A T\right)^{k} T^{-1} x_{0}
$$

Letting $J:=T^{-1} A T$, one gets the closed-form expression for the free-state response expressed in the original state coordinates

$$
x(k)=T J^{k} T^{-1} x_{0}
$$

Suppose now that the similarity transformation is such that

$$
J=T^{-1} A T
$$

takes on the Jordan Canonical Form.

Calculation of A^{k} by Similarity Transformation (cont.)

Case 1. Suppose that matrix A admits the construction of a basis of n linearly-independent eigenvectors v_{i} associated with the eigenvalues $\lambda_{i}, i=1, \ldots, n$ (not necessarily distinct).

Thus:

$$
T=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right] \Longrightarrow J=T^{-1} A T=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Hence:

$$
\begin{gathered}
J^{k}=\left[\begin{array}{ccc}
\lambda_{1}^{k} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & \lambda_{n}^{k}
\end{array}\right] \\
\Longrightarrow x(k)=T J^{k} T^{-1} x_{0}=T\left[\begin{array}{ccc}
\lambda_{1}{ }^{k} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & \lambda_{n}{ }^{k}
\end{array}\right] T^{-1} x_{0}
\end{gathered}
$$

Calculation of A^{k} by Similarity Transformation (cont.)

Case 2. Consider the general case in which matrix A has multiple eigenvalues. It is always possible to construct a basis of n linearly-independent vectors v_{i} such that:

$$
T=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right] \Longrightarrow J=T^{-1} A T=\left[\begin{array}{cccc}
J_{0} & \cdots & \cdots & 0 \\
\vdots & J_{1} & & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \cdots & \cdots & J_{s}
\end{array}\right]
$$

where

$$
J_{0}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{k}
\end{array}\right]
$$

Calculation of A^{k} by Similarity Transformation (cont.)

and $J_{i}, i \geq 1$ is a $n_{i} \times n_{i}$ matrix taking on the special form

$$
J_{i}=\left[\begin{array}{ccccc}
\lambda_{k+i} & 1 & 0 & \cdots & 0 \\
0 & \lambda_{k+i} & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \ddots & 1 \\
0 & 0 & \cdots & \cdots & \lambda_{k+i}
\end{array}\right]
$$

where not necessarily $\lambda_{k+i} \neq \lambda_{k+j}, i \neq j$ and

$$
k+n_{1}+\cdots+n_{s}=n
$$

Matrix J is block-diagonal and its special structure makes it possible to compute A^{k} in closed-form.

Calculation of A^{k} by Similarity Transformation (cont.)

In fact:

$$
J^{k}=\left[\begin{array}{cccc}
J_{0}^{k} & \cdots & \cdots & 0 \\
& J_{1}{ }^{k} & & \\
& & \ddots & \\
0 & \cdots & \cdots & J_{s}{ }^{k}
\end{array}\right]
$$

where

$$
J_{0}{ }^{k}=\left[\begin{array}{ccc}
\lambda_{1}{ }^{k} & \cdots & 0 \\
& \ddots & \\
0 & \cdots & \lambda_{r}{ }^{k}
\end{array}\right]
$$

Then:

$$
x(k)=T J^{k} T^{-1} x_{0}=T\left[\begin{array}{cccc}
J_{0}^{k} & \cdots & \cdots & 0 \\
& J_{1}{ }^{k} & & \\
& & \ddots & \\
0 & \cdots & \cdots & J_{s}{ }^{k}
\end{array}\right] T^{-1} x_{0}
$$

Calculation of A^{k} by Similarity Transformation (cont.)

Concerning the computation of $J_{i}^{k}, i=1, \ldots, s$ we can write:

$$
J_{i}=\lambda_{r+i} I_{i}+N_{i}
$$

where I_{i} is the identity matrix with dimension $n_{i} \times n_{i}$ and N_{i} is a matrix of dimension $n_{i} \times n_{i}$ having the form:

$$
N_{i}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \ddots & 1 \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right]
$$

Matrix N_{i} is a nilpotent matrix, that is, it holds:

$$
N_{i}^{k}=0, \forall k \geq n_{i}
$$

Calculation of A^{k} by Similarity Transformation (cont.)

On the other hand, one immediately gets:

$$
\begin{aligned}
& J_{i}^{k}=\left(\lambda_{r+i} I_{i}+N_{i}\right)^{k} \\
& =\lambda_{r+i}^{k} I+k \lambda_{r+i}^{k-1} N_{i}+\frac{k(k-1)}{2!} \lambda_{r+i}^{k-2} N_{i}^{2}+\cdots+k \lambda_{r+i} N_{i}^{k-1}+N_{i}^{k}
\end{aligned}
$$

thus getting to discrete-time response modes of the form

$$
\lambda^{k},\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}
$$

Determination of the State/Output Movement

Qualitative Behaviour of Response

 Modes
Qualitative Behaviour of Response Modes

- $\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}$ with $\lambda \in \mathbb{R}$, multiplicity $=1$

Qualitative Behaviour of Response Modes

- $\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}$ with $\lambda \in \mathbb{R}$, multiplicity >1
(1) $\lambda>1$

(5) $\lambda=-1$

(2) $\lambda=1$

Qualitative Behaviour of Response Modes

- $\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}$ with $\lambda \in \mathbb{C}$, multiplicity $=1$

Qualitative Behaviour of Response Modes

- $\binom{k}{n_{i}} \lambda_{i}^{k-n_{i}}$ with $\lambda \in \mathbb{C}$, multiplicity >1

External Description of LTI Dynamic Systems: Transfer Function

External Description of LTI Dynamic Systems: Transfer Function

Recall the relationship between the state space description and the impulse response (an external description):

$$
\left\{\begin{array}{l}
x(k+1)=A(k) x(k)+B(k) u(k), \quad x\left(k_{0}\right)=0 \\
y(k)=C(k) x(k)+D(k) u(k)
\end{array}\right.
$$

Recalling that

$$
y(k)=\sum_{j=k_{0}}^{k-1} C(k) \Phi(k, j+1) B(j) u(j)+D(k) u(k), \quad k>k_{0}
$$

one gets immediately

$$
H(k, j)= \begin{cases}C(k) \Phi(k, j+1) B(j), & k>j \\ D(k) & k=j \\ 0 & k<j\end{cases}
$$

which, in the time-invariant case, becomes

$$
H(k-j)= \begin{cases}C A^{k-(j+1)} B, & k>j \\ D & k=j \\ 0 & k<j\end{cases}
$$

Transfer Function

Consider the time-invariant dynamic system:

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k), \quad x\left(k_{0}\right)=0 \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

Applying the \mathcal{Z} Transform to both sides one gets:

$$
\begin{aligned}
& z\left[X(z)-x_{0}\right]=A X(z)+B U(z) \\
& \Longrightarrow(z I-A) X(z)=z x_{0}+B U(z) \\
& \Longrightarrow\left\{\begin{array}{l}
X(z)=(z I-A)^{-1} z x_{0}+(z I-A)^{-1} B U(z) \\
Y(z)=C X(z)+D U(z)
\end{array}\right. \\
& \quad \Longrightarrow Y(z)=C(z I-A)^{-1} z x(0)+\left[C(z I-A)^{-1} B+D\right] U(z)
\end{aligned}
$$

Letting $x_{0}=0$, it follows that:

$$
Y(z)=\left[C(z I-A)^{-1} B+D\right] U(z)=H(z) U(z)
$$

and $H(z)$ is called transfer function.

Transfer Function (cont.)

Let's analyse the structure of the transfer function:

$$
H(z)=\left[\begin{array}{ccc}
H_{11}(z) & \cdots & H_{1 m}(z) \\
\vdots & & \vdots \\
H_{i 1}(z) & \cdots & H_{i m}(z) \\
\vdots & & \vdots \\
H_{p 1}(z) & \cdots & H_{p m}(z)
\end{array}\right]
$$

$H(z)$ is a $p \times m$ matrix where the i-th component of the output vector is given by:

$$
Y_{i}(z)=\sum_{j=1}^{m} H_{i j}(z) U_{j}(z)=H_{i 1}(z) U_{1}(z)+H_{i 2}(z) U_{2}(z)+\cdots
$$

Hence:

$$
\begin{aligned}
& x(0)=x_{0} \\
& u_{r}(k)=0, r \neq j
\end{aligned} \quad \Longrightarrow \quad H_{i j}(z)=\frac{Y_{i}(z)}{U_{j}(z)}
$$

Transfer Function of equivalent dynamic systems

Recall:

$$
\left\{\begin{array}{l}
x(k+1)=A x(k)+B u(k) \\
y(k)=C x(k)+D u(k)
\end{array}\right.
$$

Let $\hat{x}:=T^{-1} x$, where $T \in \mathbb{R}^{n \times n}$ is a generic non-singular $n \times n$ matrix ($\operatorname{det}(T) \neq 0)$. Then, the equivalent state-space description is given by:

$$
\left\{\begin{array}{l}
\hat{x}(k+1)=T^{-1} x(k+1)=T^{-1} A T \hat{x}(k)+T^{-1} B u(k)=\hat{A} \hat{x}(k)+\hat{B} u(k) \\
y(k)=C T \hat{x}(k)+D u(k)=\hat{C} \hat{x}(k)+D u(k)
\end{array}\right.
$$

Hence:

$$
\left\{\begin{array} { l }
{ x (k + 1) = A x (k) + B u (k) } \\
{ y (k) = C x (k) + D u (k) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
\hat{x}(k+1)=\hat{A} \hat{x}(k)+\hat{B} u(k) \\
y(k)=\hat{C} \hat{x}(k)+D u(k)
\end{array}\right.\right.
$$

Transfer Function of equivalent dynamic systems (cont.)

$$
\begin{aligned}
\hat{H}(z) & =\hat{C}(z I-\hat{A})^{-1} \hat{B}+\hat{D} \\
& =C\left[T\left(z I-T^{-1} A T\right)^{-1} T^{-1}\right] B+D \\
& =C\left[T\left(z T^{-1} T-T^{-1} A T\right)^{-1} T^{-1}\right] B+D \\
& =C\left[T\left(T^{-1}(z I-A) T\right)^{-1} T^{-1}\right] B+D \\
& =C\left[T T^{-1}(z I-A)^{-1} T T^{-1}\right] B+D \\
& =C\left[(z I-A)^{-1}\right] B+D \\
& =H(z)
\end{aligned}
$$

Hence: the transfer function does not depend on the specific choice of the state variables

Transfer Function: Properties

Consider the scalar case, that is, $u(k) \in \mathbb{R}, y(k) \in \mathbb{R}$:

$$
H(z)=C\left[(z I-A)^{-1}\right] B+D
$$

and

$$
(z I-A)^{-1}=\left[\begin{array}{cccc}
z-a_{11} & -a_{12} & \cdots & -a_{1 n} \\
-a_{21} & z-a_{22} & & \vdots \\
\vdots & & \ddots & \\
-a_{n 1} & \cdots & & z-a_{n n}
\end{array}\right]^{-1}
$$

Transfer Function: Properties (cont.)

The inverse can be expressed as:

$$
(z I-A)^{-1}=\frac{1}{\operatorname{det}(z I-A)} K(z)
$$

where $K(z)$ is the matrix of the algebraic complements.
Clearly:

- $\operatorname{det}(z I-A)$ is a polynomial with degree n
- $K(z)=\left[k_{i j}(z) ; i, j=1, \ldots, n\right]$ where $k_{i j}(z)$ is a polynomial of degree $<n, \forall i, j$
- $C(z I-A)^{-1} B=\frac{1}{\operatorname{det}(z I-A)} C K(z) B=\frac{M(z)}{\varphi(z)}$ where $M(z)$ is a polynomial of degree $<n$,

Transfer Function: Properties (cont.)

Therefore:

$$
\begin{aligned}
H(z)= & C(z I-A)^{-1} B+D=\frac{M(z)}{\varphi(z)}+D \\
& =\frac{M(z)+D \varphi(z)}{\varphi(z)}=\frac{N(z)}{\varphi(z)}
\end{aligned}
$$

where:

- $N(z)$ in general is a polynomial of degree n
- In case of a strictly proper system, that is $D=0, N(z)$ in general is a polynomial of degree $<n$
- All the above holds if no common factors between $N(z)$ and $\varphi(z)$ are present

Transfer Function: Properties (cont.)

In the presence of common factors between $N(z)$ and $\varphi(z)$:

$$
H(z)=\frac{\bar{N}(z)}{\bar{\varphi}(z)}
$$

- $\bar{\varphi}(z)$ is a factor of $\varphi(z)$ of degree $\nu<n$
- $\bar{N}(z)$ has degree $m<\nu$ and has degree ν only if $D \neq 0$ (non strictly proper systems)

Transfer Function: Poles and Zeros (scalar case)

- Poles: roots of polynomial $\varphi(z)$
- Zeros: roots of polynomial $N(z)$

- The poles are eigenvalues of A
- An eigenvalue of A might not belong to the set of poles when common factors are present
- In case of more then one input and/or more than one output extra-care has to be exercised

Transfer Function: Example

$$
\left\{\begin{array}{l}
x(k+1)=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] x(k)+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u(k) \quad n=2 \\
y(k)=\left[\begin{array}{ll}
0 & 1
\end{array}\right] x(k)
\end{array}\right.
$$

Hence:

$$
\begin{aligned}
G(z)= & {\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
z-1 & -1 \\
0 & z+1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] } \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right] \frac{1}{(z-1)(z+1)}\left[\begin{array}{cc}
z+1 & 1 \\
0 & z-1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\frac{(z-1)}{(z-1)(z+1)}=\frac{1}{z+1}
\end{aligned}
$$

Thus: $\bar{\varphi}(z)=z+1$ is a factor of $\varphi(z)=(z-1)(z+1)$

Transfer Function: Example (cont.)

The state equations have the form:

$$
\left\{\begin{array}{l}
x_{1}(k+1)=x_{1}(k)+x_{2}(k)+u(k) \\
x_{2}(k+1)=-x_{2}(k)+u(k) \\
y(k)=x_{2}(k)
\end{array}\right.
$$

Only the dynamics $\left\{\begin{array}{l}x_{2}(k+1)=-x_{2}(k)+u(k) \\ y(k)=x_{2}(k)\end{array}\right.$ shows up in the transfer function $G(z)=\frac{1}{z+1}$ and the time-evolution of $x_{1}(k)$ is not influencing the output $y(k)$.

Transfer Function: Example in the Non-Scalar Case

$$
\left\{\begin{array}{l}
x(k+1)=\left[\begin{array}{cc}
0 & 1 \\
-1 & -2
\end{array}\right] x(k)+\left[\begin{array}{cc}
0 & -1 / 2 \\
1 & 1 / 2
\end{array}\right] u(k) \\
y(k)=[-33] x(k)
\end{array}\right.
$$

Hence, one gets:

$$
\begin{aligned}
H(z) & =\left[\begin{array}{ll}
-3 & 3
\end{array}\right]\left[\begin{array}{cc}
z & -1 \\
1 & z+2
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & -1 / 2 \\
1 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
-3 & 3
\end{array}\right] \frac{1}{(z+1)^{2}}\left[\begin{array}{cc}
z+2 & 1 \\
-1 & z
\end{array}\right]\left[\begin{array}{cc}
0 & -1 / 2 \\
1 & 1 / 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
-\frac{3}{z+1} & \frac{3(z-1)}{(z+1)^{2}}
\end{array}\right]\left[\begin{array}{cc}
0 & -1 / 2 \\
1 & 1 / 2
\end{array}\right]=\left[\begin{array}{ll}
\frac{3(z-1)}{(z+1)^{2}} & \frac{3}{z+1}
\end{array}\right]
\end{aligned}
$$

The notion of zeros and poles of a transfer function in the non-scalar case is more complicated (and less useful though)

Transfer Function: Alternative Definition in the Scalar Case

$$
\begin{aligned}
& x(0)=0 \\
& u(k)=\delta(k) \\
& \quad \Longrightarrow U(z)=\mathcal{Z}[\delta(k)]=1
\end{aligned}
$$

Therefore:

$$
H(z)=\frac{Y(z)}{U(z)}=\frac{Y(z)}{1}=Y(z)
$$

that is:

$$
H(z)=\mathcal{Z}[\text { Impulse Response }]
$$

Determination of Response Modes: Examples

Determination of Response Modes: Example 1

Consider:

$$
\left\{\begin{aligned}
x(k+1) & =\left[\begin{array}{cc}
-0.5 & 2 \\
0 & 0.1
\end{array}\right] x(k)+\left[\begin{array}{c}
1 \\
-0.5
\end{array}\right] u(k) \\
y(k) & =\left[\begin{array}{cc}
2 & -1.5
\end{array}\right] x(k)
\end{aligned}\right.
$$

Determine the free-state movement $x_{l}(k)=A^{k} x(0)$ starting from
the initial state $x(0)=\left[\begin{array}{c}10 \\ -10\end{array}\right]$
The free-state movement is given by

$$
x(k)=A^{k} x(0)+\sum_{i=0}^{k-1} A^{k-i-1} B u(i)
$$

We are going to determine the free-state movement in two ways:

- by the \mathcal{Z} transform
- by calculating the matrix A^{k}.

Determination of Response Modes: Example 1 (cont.)

Calculation by the \mathcal{Z} transform

$$
\begin{aligned}
& x_{l}(k)=A^{k} x(0) \Longrightarrow X_{l}(z)=z(z I-A)^{-1} x(0) \\
& (z I-A)=\left[\begin{array}{cc}
z+0.5 & -2 \\
0 & z-0.1
\end{array}\right] \\
& \quad \Longrightarrow(z I-A)^{-1}=\left[\begin{array}{cc}
\frac{2}{2 z+1} & \frac{40}{(2 z+1)(10 z-1)} \\
0 & \frac{10}{10 z-1}
\end{array}\right]
\end{aligned}
$$

Hence:

$$
X_{l}(z)=\left[\begin{array}{c}
\frac{20 z(10 z-21)}{(10 z-1)(2 z+1)} \\
-\frac{100 z}{10 z-1}
\end{array}\right]
$$

Determination of Response Modes: Example 1 (cont.)

First, we proceed with the inverse \mathcal{Z} transform:

$$
X_{l}(z)=\left[\begin{array}{c}
X_{l 1}(z) \\
X_{l 2}(z)
\end{array}\right]=\left[\begin{array}{c}
\frac{20 z(10 z-21)}{(10 z-1)(2 z+1)} \\
-\frac{100 z}{10 z-1}
\end{array}\right]
$$

Hence:

$$
\begin{gathered}
X_{l 1}(z)=\frac{20 z(10 z-21)}{(10 z-1)(2 z+1)} \\
\Longrightarrow \frac{X_{l 1}(z)}{z}=\frac{20(10 z-21)}{(10 z-1)(2 z+1)}=\frac{C_{1}}{z-\frac{1}{10}}+\frac{C_{2}}{z+\frac{1}{2}} \\
C_{1}=\lim _{z \rightarrow \frac{1}{10}} \frac{20(10 z-21)}{10(2 z+1)}=-\frac{100}{3} ; C_{2}=\lim _{z \rightarrow-\frac{1}{2}} \frac{20(10 z-21)}{2(10 z-1)}=\frac{130}{3} \\
\text { thus getting: } \quad X_{l 1}(z)=-\frac{100}{3} \frac{z}{\left(z-\frac{1}{10}\right)}+\frac{130}{3} \frac{z}{\left(z+\frac{1}{2}\right)}
\end{gathered}
$$

Determination of Response Modes: Example 1 (cont.)

Then, it follows that:

$$
X_{l}(z)=\left[\begin{array}{c}
-\frac{100}{3} \frac{z}{\left(z-\frac{1}{10}\right)}+\frac{130}{3} \frac{z}{\left(z+\frac{1}{2}\right)} \\
-10 \frac{z}{\left(z-\frac{1}{10}\right)}
\end{array}\right]
$$

and thus:

$$
x_{l}(k)=\left[\begin{array}{c}
\left\{-\frac{100}{3}\left(\frac{1}{10}\right)^{k}+\frac{130}{3}\left(-\frac{1}{2}\right)^{k}\right\} \cdot 1(k) \\
-10\left(\frac{1}{10}\right)^{k} \cdot 1(k)
\end{array}\right]
$$

Determination of Response Modes: Example 1 (cont.)

Now, as alternative technique, we proceed with calculating the matrix A^{k}.

- $A=\left[\begin{array}{cc}-0.5 & 2 \\ 0 & 0.1\end{array}\right]$
- Eigenvalues: $\lambda_{1}=-0.5, \lambda_{2}=0.1$. Hence, matrix A admits a diagonal similar matrix because the eigenvalues are distinct
- The characteristic polynomial is given by:

$$
p_{A}(\lambda)=\operatorname{det}(\lambda I-A)=(\lambda+0.5)(\lambda-0.1)
$$

- A basis of linearly independent eigenvectors is now determined.

Determination of Response Modes: Example 1 (cont.)

- $A z=\lambda_{1} z \quad$ with $\quad z=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$
$\left[\begin{array}{cc}-0.5 & 2 \\ 0 & 0.1\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=-0.5 \cdot\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right] \Longrightarrow\left\{\begin{array}{rll}-0.5 z_{1}+2 z_{2} & = & -0.5 z_{1} \\ 0.1 z_{2} & = & -0.5 z_{2}\end{array}\right.$
For example: $z_{2}=0 \Longrightarrow z^{(1)}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
$A z=\lambda_{2} z$
- $A z=\lambda_{2} z$
$\left[\begin{array}{cc}-0.5 & 2 \\ 0 & 0.1\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=0.1 \cdot\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right] \Longrightarrow\left\{\begin{aligned}-0.5 z_{1}+2 z_{2} & =0.1 z_{1} \\ 0.1 z_{2} & =0.1 z_{2}\end{aligned}\right.$
For example: $z_{2}=\frac{3}{10} z_{1} \Longrightarrow z^{(2)}=\left[\begin{array}{c}10 \\ 3\end{array}\right]$

Determination of Response Modes: Example 1 (cont.)

One now proceeds with calculating the equivalent state-space representation of matrix A :

$$
T=\left[z^{(1)} \mid z^{(2)}\right]=\left[\begin{array}{cc}
1 & 10 \\
0 & 3
\end{array}\right] \Longrightarrow T^{-1}=\frac{1}{3}\left[\begin{array}{rr}
3 & -10 \\
0 & 1
\end{array}\right]
$$

thus obtaining:
$\tilde{A}=T^{-1} A T=\frac{1}{3}\left[\begin{array}{rr}3 & -10 \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}-\frac{1}{2} & 2 \\ 0 & \frac{1}{10}\end{array}\right]\left[\begin{array}{cc}1 & 10 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}-\frac{1}{2} & 0 \\ 0 & \frac{1}{10}\end{array}\right]$

Determination of Response Modes: Example 1 (cont.)

The calculation of A^{k} is now straightforward:

$$
\begin{aligned}
& A^{k}=M \tilde{A}^{k} M^{-1}=M\left[\begin{array}{cc}
\left(-\frac{1}{2}\right)^{k} & 0 \\
0 & \left(\frac{1}{10}\right)^{k}
\end{array}\right] M^{-1} \\
& =\left[\begin{array}{cc}
1 & 10 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
\left(-\frac{1}{2}\right)^{k} & 0 \\
0 & \left(\frac{1}{10}\right)^{k}
\end{array}\right] \cdot \frac{1}{3}\left[\begin{array}{rr}
3 & -10 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{1}{2}\right)^{k}\left(-\frac{10}{3}\left(-\frac{1}{2}\right)^{k}+\frac{10}{3}\left(\frac{1}{10}\right)^{k}\right) \\
0
\end{array}\right]
\end{aligned}
$$

Determination of Response Modes: Example 1 (cont.)

Finally, from

$$
A^{k}=\left[\begin{array}{cc}
\left(-\frac{1}{2}\right)^{k} & \left(-\frac{10}{3}\left(-\frac{1}{2}\right)^{k}+\frac{10}{3}\left(\frac{1}{10}\right)^{k}\right) \\
0 & \left(\frac{1}{10}\right)^{k}
\end{array}\right]
$$

and $x(0)=\left[\begin{array}{c}10 \\ -10\end{array}\right]$, one gets:

$$
x_{l}(k)=\left[\begin{array}{c}
\left\{-\frac{100}{3}\left(\frac{1}{10}\right)^{k}+\frac{130}{3}\left(-\frac{1}{2}\right)^{k}\right\} \cdot 1(k) \\
-10\left(\frac{1}{10}\right)^{k} \cdot 1(k)
\end{array}\right]
$$

Determination of Response Modes: Example 2

Consider:

$$
\left\{\begin{array}{l}
x_{1}(k+1)=x_{1}(k)+4 x_{2}(k) \\
x_{2}(k+1)=x_{1}(k)+x_{2}(k)
\end{array}\right.
$$

Setting $x(0)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, show in two different ways that

$$
\lim _{k \rightarrow \infty} \frac{x_{1}(k)}{x_{2}(k)}=2
$$

We are going to determine the free-state movement yielding $x_{1}(k), x_{2}(k), \forall k \geq 0$ in two ways:

- by the \mathcal{Z} transform
- by calculating the matrix A^{k}.

Determination of Response Modes: Example 2 (cont.)

Using the \mathcal{Z} transform:

$$
\left\{\begin{array} { l }
{ z X _ { 1 } (z) - z = X _ { 1 } (z) + 4 X _ { 2 } (z) } \\
{ z X _ { 2 } (z) - z = X _ { 1 } (z) + X _ { 2 } (z) }
\end{array} \Longrightarrow \left\{\begin{array}{l}
X_{1}(z)=\frac{z(z+3)}{(z+1)(z-3)} \\
X_{2}(z)=\frac{z^{2}}{(z+1)(z-3)}
\end{array}\right.\right.
$$

Hence:

$$
\left\{\begin{aligned}
& x_{1}(k)=\left[\left(-\frac{1}{2}\right)(-1)^{k}+\frac{3}{2} 3^{k}\right] 1(k) \\
& x_{2}(k)=\left[\frac{1}{4}(-1)^{k}+\frac{3}{4} 3^{k}\right] 1(k) \\
& \Longrightarrow \lim _{k \rightarrow \infty} \frac{x_{1}(k)}{x_{2}(k)}=\lim _{k \rightarrow \infty} \frac{\left(\frac{3}{2}\right) 3^{k}}{\left(\frac{3}{4}\right) 3^{k}}=2
\end{aligned}\right.
$$

Determination of Response Modes: Example 2 (cont.)

Using the calculation of A^{k} :

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 4 \\
1 & 1
\end{array}\right] \Longrightarrow \operatorname{det}(\lambda I-A)=\lambda^{2}-2 \lambda-3=0 \Longrightarrow \begin{array}{l}
\text { distinct } \\
\text { eigenvalues } \\
\lambda_{1}=3 \\
\lambda_{2}=-1
\end{array} \\
& \left.\operatorname{ker}(A-3 I)=\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} \Rightarrow \begin{array}{cc}
-2 & 2 \\
1 & 1
\end{array}\right] \\
& \operatorname{ker}(A+I)=\left\{\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right\} \Longrightarrow \quad T^{-1}=-\frac{1}{4}\left[\begin{array}{cc}
1 & -2 \\
-1 & -2
\end{array}\right]
\end{aligned}
$$

Thus

$$
\tilde{A}=T^{-1} A T=\left[\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right]
$$

Determination of Response Modes: Example 2 (cont.)

By some algebra:

$$
A^{k}=T \tilde{A}^{k} T^{-1}=\left[\begin{array}{cc}
\frac{1}{2} 3^{k}+\frac{1}{2}(-1)^{k} & 3^{k}-(-1)^{k} \\
\frac{1}{4}\left(3^{k}-(-1)^{k}\right) & \frac{1}{2} 3^{k}+\frac{1}{2}(-1)^{k}
\end{array}\right]
$$

and then:

$$
\begin{aligned}
& x(k)=A^{k} x(0)=\left\{\begin{array}{l}
x_{1}(k)=\left[\left(-\frac{1}{2}\right)(-1)^{k}+\frac{3}{2} 3^{k}\right] 1(k) \\
x_{2}(k)=\left[\frac{1}{4}(-1)^{k}+\frac{3}{4} 3^{k}\right] 1(k)
\end{array}\right. \\
& \Longrightarrow \lim _{k \rightarrow \infty} \frac{x_{1}(k)}{x_{2}(k)}=\lim _{k \rightarrow \infty} \frac{\left(\frac{3}{2}\right) 3^{k}}{\left(\frac{3}{4}\right) 3^{k}}=2
\end{aligned}
$$

267MI -Fall 2019

Lecture 2

State and Output Movement of
Linear Discrete-Time Systems

END

