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Solution of the Prediction
Problem



Solution of the Prediction Problem

Consider the process v(t) with rational complex spectrum:

where ξ(·) ∼ WN(0, λ2) and Ŵ (z) =
N(z)

D(z)
is the spectral

canonical factor, that is:

• N(z) and D(z) are monic, co-prime and of the same degree
• All roots of N(z) (zeros of Ŵ (z) ) have | · | ≤ 1
• All roots of D(z) (poles of Ŵ (z) ) have | · | < 1
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Solution of the Prediction Problem (cont.)

• Then:

v(t) =

∞∑
i=0

ŵ(i) ξ(t− i) = ŵ(0)ξ(t) + ŵ(1)ξ(t− 1) + · · ·

where ŵ(0), ŵ(1), . . . are the samples of the impulse response
of the system with transfer function Ŵ (z) :

ŵ(k) = Z−1
[
Ŵ (z)

]
• Let us introduce the additional assumption:

All roots of N(z) (zeros of Ŵ (z) ) have | · | < 1
Hence: the spectral factorisation theorem also holds for

W̃ (z) =
1

Ŵ (z)
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Solution of the Prediction Problem (cont.)

• Then, we are able to consider

that is, feeding the system having transfer function W̃ (z) with
the process v(t) , at the output we obtain exactly the white
process ξ(t)

• W̃ (z) is called whitening filter and

ξ(t) =

∞∑
i=0

w̃(i) v(t− i) = w̃(0)v(t) + w̃(1)v(t− 1) + · · ·

• Thus, the whitening filter is kind of a inverse filter with respect
to the canonical representation of the original process v(t)
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Solution of the Prediction Problem (cont.)

• Let us now consider

v(t) =

∞∑
i=0

ŵ(i) ξ(t− i) = ŵ(0)ξ(t) + ŵ(1)ξ(t− 1) + · · ·

Clearly v(t) ∈ Ht[ξ] where we recall that Ht[ξ] is the space of
all infinite linear combinations of ξ(t), ξ(t− 1), . . . .
Analogously:

v(t− 1) =
∞∑
i=0

ŵ(i) ξ(t− 1− i) = ŵ(0)ξ(t− 1) + ŵ(1)ξ(t− 2) + · · ·

v(t− 2) =
∞∑
i=0

ŵ(i) ξ(t− 2− i) = ŵ(0)ξ(t− 2) + ŵ(1)ξ(t− 3) + · · ·

· · ·

• Hence linear combinations of v(t), v(t− 1), . . . can be
expressed as linear combinations of ξ(t), ξ(t− 1), . . . which
implies:

Ht[v] ⊆ Ht[ξ]
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Solution of the Prediction Problem (cont.)

• In the same way, one gets:

ξ(t) =

∞∑
i=0

w̃(i) v(t− i) = w̃(0)v(t) + w̃(1)v(t− 1) + · · ·

Clearly ξ(t) ∈ Ht[v] and

ξ(t− 1) =
∞∑
i=0

w̃(i) v(t− 1− i) = w̃(0)v(t− 1) + w̃(1)v(t− 2) + · · ·

ξ(t− 2) =
∞∑
i=0

w̃(i) v(t− 2− i) = w̃(0)v(t− 2) + w̃(1)v(t− 3) + · · ·

· · ·

• Hence linear combinations of ξ(t), ξ(t− 1), . . . can be
expressed as linear combinations of v(t), v(t− 1), . . . which
implies:

Ht[ξ] ⊆ Ht[v]

• Thus, we finally conclude that:

Ht[ξ] = Ht[v]
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Solution of the Prediction Problem (cont.)

The Prediction Problem

• Given the rational spectrum stationary process v(t) , we want
to estimate v(t+ r), r ≥ 1 as a function of the past
observations v(t), v(t− 1), . . .

• The observations v(t), v(t− 1), . . . clearly make up an a-priori
knowledge with respect to the quantity to be estimated
v(t+ r)

• Therefore, it is quite natural to cast the prediction problem in
the framework of Bayes estimation:

v̂(t+ r | t) = E [v(t+ r) | v(t), v(t− 1), . . .]
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Solution of the Prediction Problem (cont.)

• Recall the geometric interpretation of the Bayes estimation:

ϑ̂ =
λϑd

λdd
d = ∥ϑ∥ cosα

d

∥d∥

Hence, in the case of the prediction problem v̂(t+ r | t) is the
projection of v(t+ r) (interpreted as a geometric vector) on
the subspace (hyper-plane) Ht[ξ] ( = Ht[v])
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Solution of the Prediction Problem (cont.)

• Let us now determine v̂(t+ r | t) :

v(t+ r) =

∞∑
i=0

ŵ(i) ξ(t+ r − i)

= ŵ(0)ξ(t+ r) + ŵ(1)ξ(t+ r − 1) + · · ·+ ŵ(r − 1)ξ(t+ 1)︸ ︷︷ ︸
α(t)

+ ŵ(r)ξ(t) + ŵ(r + 1)ξ(t− 1) + · · ·︸ ︷︷ ︸
β(t)

= α(t) + β(t)

where:
• α(t) : lin. comb. of white process samples in [t+ 1, t+ r] ∩ Z
• β(t) : lin. comb. of white process samples in (−∞, t] ∩ Z
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Solution of the Prediction Problem (cont.)

• But: ξ(t) is white =⇒ α(t) and β(t) are uncorrelated
• Hence, vectors associated with α(t) and β(t) are orthogonal

• Thus: the optimal prediction coincides with β(t) :

v̂(t+ r | t) = ŵ(r)ξ(t) + ŵ(r + 1)ξ(t− 1) + · · ·
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Solution of the Prediction Problem (cont.)

• Instead, the prediction error coincides with α(t) which is
orthogonal to Ht[ξ] (= Ht[v]) :

ε(t) = v(t+ r)− v̂(t+ r | t)
= ŵ(0)ξ(t+ r) + ŵ(1)ξ(t+ r − 1) + · · ·+ ŵ(r − 1)ξ(t+ 1)

• Therefore, by defining

Ŵr(z) = ŵ(r) + ŵ(r + 1)z−1 + · · ·

Optimal Predictor
Ŵr(z) is the transfer function of the r-th steps ahead optimal
predictor from the white process samples ξ(t)
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Solution of the Prediction
Problem

Determination of the Predictor



Determination of the Predictor

The computation of Ŵr(z) is very simple: just carry out the
long-division between the numerator and denominator of Ŵ (z) :

Ŵ (z) = ŵ(0) + ŵ(1)z−1 + · · ·+ ŵ(r − 1)z−r+1

+ŵ(r)z−r + ŵ(r + 1)z−r−1 + · · ·
= ŵ(0) + ŵ(1)z−1 + · · ·+ ŵ(r − 1)z−r+1

+z−r
[
ŵ(r) + ŵ(r + 1)z−1 + · · ·

]
= ŵ(0) + ŵ(1)z−1 + · · ·+ ŵ(r − 1)z−r+1 + z−r Ŵr(z)

Determination of the Optimal Predictor
Ŵr(z) is obtained as a result of the r-times repeated division: the
remainder, multiplied by zr is the Ŵr(z) we were looking for:

Ŵ (z) =
N(z)

D(z)
=⇒ N(z)

D(z)
= E(z) + z−rŴr(z)
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Determination of the Predictor: Basic Example

Consider:

v(t) +
5
6v(t− 1) +

1
6v(t− 2) = ξ(t) +

1
9ξ(t− 1)

=⇒ (1+ 5
6z

−1 +
1
6z

−2)v(t) = (1+ 1
9z

−1)ξ(t)

=⇒ v(t) =
z(z + 1

9 )

z2 + 5
6z +

1
6
ξ(t)

The assumptions of the spectral factorization theorem are satisfied
because the poles are −12 ,−

1
3 and the zeros are 0,−19 and hence

they lie strictly inside the unit-circle.
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Determination of the Predictor: Basic Example (cont.)

One-step ahead predictor:

Ŵ (z) = 1+ z−1
− 13
18 −

1
6z

−1

1+ 5
6z

−1 + 1
6z

−2 =⇒ Ŵ1(z) =
− 13
18 −

1
6z

−1

1+ 5
6z

−1 + 1
6z

−2

Hence:

v̂(t+ 1|t) = −56 v̂(t|t− 1)−
1
6 v̂(t− 1|t− 2)−

13
18ξ(t)−

1
6ξ(t− 1)
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Determination of the Predictor: Basic Example (cont.)

Two-steps ahead predictor:

Ŵ (z) = 1− 13
18z

−1+z−2
47
108 +

13
108z

−1

1+ 5
6z

−1 + 1
6z

−2 =⇒ Ŵ2(z) =
47
108 +

13
108z

−1

1+ 5
6z

−1 + 1
6z

−2

Hence:

v̂(t+ 2|t) = −56 v̂(t+ 1|t− 1)−
1
6 v̂(t|t− 2) +

47
108ξ(t) +

13
108ξ(t− 1)

DIA@UniTS – 267MI –Fall 2019 TP GF – L10–p15



Determination of the Predictor from Observed Data

• Starting from the spectral canonical factor Ŵ (z) =
C(z)

A(z)
we

have obtained the transfer function Ŵr(z) =
Cr(z)

A(z)
of the r-th

steps ahead optimal predictor from the samples of ξ(t) :

• However, the process ξ(t) is just a mathematical abstraction
but certainly it is not a measurable entity. Instead, the goal is
to determine a predictor yielding the prediction v̂(t+ r|t) using
the measurable past observations v(t), v(t− 1), v(t− 2), . . . .
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Determination of the Predictor from Observed Data

• Recall that Ht[ξ] = Ht[v] . Hence, it is sufficient to suitably use
the whitening filter:

W̃ (z) =
1

Ŵ (z)
=

A(z)

C(z)
=⇒ Wr(z) =

A(z)

C(z)

Cr(z)

A(z)
=

Cr(z)

C(z)

Remark. The additional assumption for which the zeroes of C(z)

should lie strictly inside the unit-circle is unavoidable to guarantee
the stability of the predictor.
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Determination of the Predictor: Basic Example (cont.)

Continuing the previous example, the one-step ahead predictor
from the observed data is:

W1(z) =
1+ 5

6z
−1 + 1

6z
−2

1+ 1
9z

−1 ·
− 13
18 −

1
6z

−1

1+ 5
6z

−1 + 1
6z

−2 =
− 13
18 −

1
6z

−1

1+ 1
9z

−1

and hence

v̂(t+ 1|t) = −19 v̂(t|t− 1)−
13
18v(t)−

1
6v(t− 1)

Analogously, the two-steps ahead predictor from the observed data
is:

W2(z) =
1+ 5

6z
−1 + 1

6z
−2

1+ 1
9z

−1 ·
47
108 +

13
108z

−1

1+ 5
6z

−1 + 1
6z

−2 =
47
108 +

13
108z

−1

1+ 1
9z

−1

and hence

v̂(t+ 2|t) = −19 v̂(t+ 1|t− 1) +
47
108v(t) +

13
108v(t− 1)
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Solution of the Prediction
Problem

Prediction Errors



Prediction Errors

One has:

ε(t) = v(t+ r)− v̂(t+ r | t)
= ŵ(0)ξ(t+ r) + ŵ(1)ξ(t+ r − 1) + · · ·+ ŵ(r − 1)ξ(t+ 1)

Notice that ε(t) is a MA(r) process. Therefore:

• E[ε(t)] = ŵ(0)E[ξ(t+ r)] + ŵ(1)E[ξ(t+ r − 1)]
+ · · ·+ ŵ(r − 1)E[ξ(t+ 1)] = 0

• var [ε(t)] =
[
ŵ(0)2 + ŵ(1)2 + · · ·+ ŵ(r − 1)2

]
λ2

Remark. The variance of the prediction error increases as r

increases and asymptotically converges to the variance of the
process v(t) (the variance is finite thanks to the stability
assumption).
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Solution of the Prediction
Problem

A Key Example



A notable/Key Example

We want to solve the prediction problems for a generic AR(1)
process.

v(t) = av(t− 1) + ξ(t) , ξ(·) ∼ WN(0, λ2) , |a| < 1

Hence:(
1− az−1

)
v(t) = ξ(t) =⇒ v(t) =

1
1− az−1

ξ(t) =
1

A(z)
ξ(t)

Since |a| < 1 , it follows that Ŵ (z) =
1

A(z)
is a canonical factor.
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A notable/Key Example (cont.)

Then:

Ŵ (z) =
1

A(z)
=

z

z − a
= 1+ az−1 + a2z−2 + · · ·+ z−r ar z

z − a

Hence:

Ŵr(z) =
ar z

z − a
=

ar

1− az−1
=⇒ v̂(t+ r |t) = av̂(t+ r − 1 |t− 1) + ar ξ(t)

Wr(z) =
Cr(z)

C(z)
=

ar z

z
= ar =⇒ v̂(t+ r |t) = ar v(t)
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A notable/Key Example (cont.)

• The outcome for which v̂(t+ r |t) = ar v(t) is not surprising: we
have the process v(t) = av(t− 1) + ξ(t) and hence it is
reasonable that the one-step ahead prediction of v(t+ 1) is
av(t) as, at time t , a white noise is added to v(t) .

• Notice that v̂(t+ r |t) = ar v(t) −→ 0 for r → ∞ . This is
consistent with E[v(t)] = 0 and then, for r → ∞ , the
prediction has to coincide with the expected value of the
process

• Prediction error variance:

ε(t) = v(t+ r)− v̂(t+ r | t)
= arv(t) + ξ(t+ r) + aξ(t+ r − 1) + · · ·+ ar−1ξ(t+ 1)− arv(t)

= ξ(t+ r) + aξ(t+ r − 1) + · · ·+ ar−1ξ(t+ 1)
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A notable/Key Example (cont.)

• Therefore, the prediction error is a MA(r − 1) process for
which

var [ε(t)] =
[
1+ a2 + a4 + · · ·+ a2(r−1)

]
λ2

and hence the variance of the prediction error grows with
respect to r .

• Moreover:
lim
r→∞

var [ε(t)] =
λ2

1− a2
= var [v(t)]

because

var [v(t)] = E
[
[v(t)2

]
= E


[ ∞∑
i=0

ŵ(i) ξ(t− i)

]2
=

∞∑
i=0

ŵ(i)2E
[
ξ(t− i)2

]
= λ2

∞∑
i=0

ŵ(i)2 = λ2
1

1− a2
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Solution of the Prediction
Problem

One-step Ahead Prediction for ARMA
Processes



One-step Ahead Prediction for ARMA Processes

• Consider the process ARMA(na, nc), ξ(·) ∼ WN(0, λ2) :

v(t) = a1v(t− 1) + a2v(t− 2) + · · ·+ anv(t− n)

+ξ(t) + c1ξ(t− 1) + c2ξ(t− 2) + · · ·+ cnξ(t− n)

Hence:
A(z)v(t) = C(z)ξ(t)

with
A(z) = 1− a1z

−1 − · · · − anaz
−na

C(z) = 1+ c1z
−1 + · · ·+ cnc

z−nc

W (z) =
C(z)

A(z)
=
1+ c1z−1 + · · ·+ cnc

z−nc

1− a1z−1 − · · · − anaz
−na

Setting n = max(na, nc) : W (z) =
zn + c1zn−1 + · · ·+ cncz

n−nc

zn − a1zn−1 − · · · − ana
zn−na
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One-step Ahead Prediction for ARMA Processes (cont.)

• Assume that the zeros and poles of W (z) are different from
each other and that they all lie strictly inside the unit circle

• Since we are determining the one-step ahead predictor, we get:

Thus:

C(z)

A(z)
= 1+ C(z)−A(z)

A(z)
= 1+ z−1

z [C(z)−A(z)]

A(z)

and hence
Ŵ1(z) =

z [C(z)−A(z)]

A(z)

W1(z) =
z [C(z)−A(z)]

C(z)
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One-step Ahead Prediction for ARMA Processes (cont.)

• Since A(z) and C(z) are monic, in C(z)−A(z) the constant
term is missing:

C(z)−A(z) =
(
1+ c1z

−1 + · · ·+ cnz
−n

)
−

(
1− a1z

−1 − · · · − anz
−n

)
= (c1 + a1)z

−1 + · · ·+ (cn + an)z
−n

Hence:

C(z) v̂(t+ 1 |t) = [C(z)−A(z)] z v(t)

= [C(z)−A(z)] v(t+ 1)
=

[
(c1 + a1)z

−1 + · · ·+ (cn + an)z
−n

]
v(t+ 1)

= (c1 + a1)v(t) + (c2 + a2)v(t− 1) + · · ·+ (cn + an)v(t− n+ 1)

and then:

v̂(t+ 1 |t) = −c1v̂(t |t− 1)− c2v̂(t− 1 |t− 2) · · · − cnv̂(t− n+ 1 |t− n)

+(c1 + a1)v(t) + (c2 + a2)v(t− 1) + · · ·+ (cn + an)v(t− n+ 1)

Remark. Stability of the predictor guaranteed because zeros of
C(z) are assumed to lie inside the unit circle
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One-step Ahead Prediction for ARMA Processes (cont.)

Alternative Procedure

A(z)v(t) = C(z)ξ(t)

• Add and subtract to the right-hand side the term C(z)v(t) :
A(z)v(t) = C(z)ξ(t) + C(z)v(t)− C(z)v(t)

=⇒ C(z)v(t) = [C(z)−A(z)] v(t) + C(z) ξ(t)

=⇒ v(t) =
[C(z)−A(z)]

C(z)
v(t) + ξ(t) (⋆)

• But [C(z)−A(z)]

C(z)
= #z−1 +#z−2 + · · · and hence v(t) in (⋆)

is a function of v(t− 1), v(t− 2), . . .
• Moreover ξ(t) is uncorrelated with the past of v(t) . Then:

v̂(t | t− 1) = [C(z)−A(z)]

C(z)
v(t)

where ξ(t) has been dropped since it is uncorrelated with the
first term and it is unpredictable from the past
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Solution of the Prediction
Problem

Prediction in Presence of External
Inputs



Prediction in Presence of External Inputs

• First, consider the simple case

v(t) = av(t− 1) + u+ ξ(t) , |a| < 1 , ξ(·) ∼ WN(0, λ2)

where u is constant, known, and deterministic.
• Clearly:

E[v(t)] = aE[v(t− 1)] + u+ E[ξ(t)]

=⇒ (1− a)E[v(t)] = u =⇒ E[v(t)] =
u

1− a

• Set v̄ =
u

1− a
and ṽ(t) = v(t)− v̄ . Then:

ṽ(t) = v(t)− v̄ = av(t− 1) + u+ ξ(t)− v̄

=⇒ ṽ(t) = av(t− 1)− av̄ + u+ ξ(t) + (a− 1)v̄
= aṽ(t− 1) + u+ ξ(t) + (a− 1)v̄
= aṽ(t− 1) + ξ(t)
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Prediction in Presence of External Inputs (cont.)

• Let us write the process in terms of “variations”:

ṽ(t) = aṽ(t− 1) + ξ(t)

This process is AR(1) and hence:

ˆ̃v(t | t− 1) = aṽ(t− 1)

But v(t) = ṽ(t) + v̄ and thus:

v̂(t | t− 1) = ˆ̃v(t | t− 1) + v̄ = aṽ(t− 1) + v̄

= a[v(t− 1)− v̄] + v̄

= av(t− 1) + u

To sum-up:
the one-step ahead predictor can be obtained by adding the known
external input to the predictor obtained without considering the
external input
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Prediction in Presence of External Inputs (cont.)

• Let us generalize (without proof) to the case of ARMAX models:

A(z)v(t) = B(z)u(t) + C(z)ξ(t)

with:
A(z) = 1− a1z

−1 − · · · − anz
−n

B(z) = b1z
−1 + · · ·+ bnz

−n

C(z) = 1+ c1z
−1 + · · ·+ cnz

−n

The one-step ahead predictor can be obtained by adding the known
(deterministic or not) external term B(z)u(t) to the predictor
obtained without considering the external input:

v̂(t+ 1 |t) = −c1v̂(t |t− 1)− c2v̂(t− 1 |t− 2) · · · − cnv̂(t− n+ 1 |t− n)

+(c1 + a1)v(t) + (c2 + a2)v(t− 1) + · · ·+ (cn + an)v(t− n+ 1)
+b1u(t) + b2u(t− 1) + · · ·+ bnu(t− n+ 1)
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Models and Predictors



Models and Predictors

• Consider the general model

M(ϑ) : y(t) = G(z)u(t− 1) +W (z) ξ(t)

where ϑ denotes a vector of parameters characterizing the
model in which the one-step delay between input and output
is explicitly enhanced (a widely used convention)
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Models and Predictors (cont.)

• Let us determine the optimal predictor:

y(t) = G(z)u(t− 1) +W (z) ξ(t)

=⇒ 1
W (z)

y(t) =
G(z)

W (z)
u(t− 1) + ξ(t)

=⇒ y(t) +
1

W (z)
y(t) = y(t) +

G(z)

W (z)
u(t− 1) + ξ(t)

=⇒ y(t) =

[
1− 1

W (z)

]
y(t) +

G(z)

W (z)
u(t− 1) + ξ(t)

• But W (z) is monic and hence 1− 1
W (z)

= #z−1 +#z−2 + · · · .

Therefore,
[
1− 1

W (z)

]
y(t) depends on y(t− 1), y(t− 2), . . . .

• Moreover, G(z)

W (z)
u(t− 1) depends on u(t− 1), u(t− 2), . . .
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Models and Predictors (cont.)

• Therefore, since ξ(t) is white, the class of optimal predictors
M̂(ϑ) associated with the class of models M(ϑ) is:

M̂(ϑ) : ŷ(t | t− 1) =
[
1− 1

W (z)

]
y(t) +

G(z)

W (z)
u(t− 1)

where the optimality stems from the fact that the prediction
error

ε̂(t) = y(t)− ŷ(t | t− 1) = ξ(t)

is white (zero expected value and variance equal to the
variance of ξ(t) ).

• Let us now consider another predictor M̃(ϑ) with a white
prediction error ε̃(t) with zero expected value. Assume that
M̃(ϑ) is “better” than M̂(ϑ) , that is

var [ε̃(t)] < var [ε̂(t)]
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Models and Predictors (cont.)

• But:

ε̃(t) = y(t)− ỹ(t | t− 1) = y(t)− ŷ(t | t− 1) + ŷ(t | t− 1)− ỹ(t | t− 1)
= ξ(t) + ŷ(t | t− 1)− ỹ(t | t− 1)

On the other hand, M̂(ϑ) and M̃(ϑ) are predictors and hence:
• ŷ(t | t− 1) depends on y(t− 1), y(t− 2), . . .
• ỹ(t | t− 1) depends on y(t− 1), y(t− 2), . . .

Therefore ŷ(t | t− 1)− ỹ(t | t− 1) is uncorrelated with ξ(t) and
hence

var[ε̃(t)] = var[ξ(t) + ŷ(t | t− 1)− ỹ(t | t− 1)]
= var[ξ(t)] + var[ŷ(t | t− 1)− ỹ(t | t− 1)]
≥ var[ξ(t)] = var[ε̂(t)]

which contradicts the assumption var [ε̃(t)] < var [ε̂(t)] hence
proving that M̂(ϑ) is optimal.
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Models and Predictors (cont.)

Summing up:

The model and its associated predictor

M(ϑ) : y(t) = G(z)u(t− 1) +W (z) ξ(t)

=⇒ M̂(ϑ) : ŷ(t | t− 1) =
[
1− 1

W (z)

]
y(t) +

G(z)

W (z)
u(t− 1)

M̂(ϑ) is called model in prediction form.
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Predictors for ARX Models

M(ϑ) : A(z) y(t) = B(z)u(t− 1) + ξ(t)

=⇒ G(z) =
B(z)

A(z)
W (z) =

1
A(z)

ϑ =



a1
...
an
b1
...
bn


Then:

ŷ(t | t− 1) =
[
1− 1

W (z)

]
y(t) +

G(z)

W (z)
u(t− 1)

= [1−A(z)] y(t) +B(z)u(t− 1)
= a1 y(t− 1) + a2 y(t− 2) + · · ·+ an y(t− n)

+b1 u(t− 1) + b2 u(t− 2) + · · ·+ bn u(t− n)

Observe that ŷ(t | t− 1) does not depend on its past values, that is,
the predictor is not dynamic and hence it is always stable
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Predictors for ARMAX Models

M(ϑ) : A(z) y(t) = B(z)u(t− 1) + C(z) ξ(t)

=⇒ G(z) =
B(z)

A(z)
W (z) =

C(z)

A(z)
ϑ =



a1
...
an
b1
...
bn
c1
...
cn


Then:

ŷ(t | t− 1) =
[
1− 1

W (z)

]
y(t) +

G(z)

W (z)
u(t− 1)

=

[
1− A(z)

C(z)

]
y(t) +

B(z)

C(z)
u(t− 1)

=

[
C(z)−A(z)

C(z)

]
y(t) +

B(z)

C(z)
u(t− 1)
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Predictors for ARMAX Models (cont.)

Hence:

ŷ(t |t− 1) = −c1ŷ(t− 1 |t− 2)− c2ŷ(t− 2 |t− 3) · · · − cnŷ(t− n |t− n− 1)
+(c1 + a1)y(t− 1) + (c2 + a2)y(t− 2) + · · ·+ (cn + an)y(t− n)

+b1u(t− 1) + b2u(t− 2) + · · ·+ bnu(t− n)

Observe that ŷ(t |t− 1) now depends on its past values, that is, the
predictor is dynamic.
Therefore, its stability depends on the position in the complex
plane of the zeroes of C(z)
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Predictors for MA Models

M(ϑ) : y(t) = C(z) ξ(t)

=⇒ G(z) = 0 W (z) = C(z) ϑ =


c1
...
cn


Then:

ŷ(t | t− 1) =
[
1− 1

W (z)

]
y(t) +

G(z)

W (z)
u(t− 1)

=

[
1− 1

C(z)

]
y(t) =

[
C(z)− 1
C(z)

]
y(t)

= −c1ŷ(t− 1 |t− 2)− c2ŷ(t− 2 |t− 3) · · · − cnŷ(t− n |t− n− 1)
+c1y(t− 1) + c2y(t− 2) + · · ·+ cny(t− n)

Analogously to the ARMAX case, observe that ŷ(t | t− 1) depends on
its past values, that is, the predictor is dynamic.
Therefore, its stability depends on the position in the complex
plane of the zeroes of C(z) .
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Predictors for ARXAR Models

M(ϑ) : A(z) y(t) = B(z)u(t− 1) + 1
D(z)

ξ(t)

=⇒ G(z) =
B(z)

A(z)
W (z) =

1
A(z)D(z)

ϑ =



a1
...
an
b1
...
bn
d1
...
dn


Then:

ŷ(t | t− 1) =
[
1− 1

W (z)

]
y(t) +

G(z)

W (z)
u(t− 1)

= [1−A(z)D(z)] y(t) +B(z)D(z)u(t− 1)
Analogously to the ARX case, the predictor is not dynamic and
hence it is always stable
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Models and Predictors: Remarks

• All models in prediction form M̂(ϑ) depend linearly on y(t)

and u(t)

• In general, the stability of the model in prediction form M̂(ϑ)

has nothing to do with the stability of the associated model
M(ϑ) : for all considered models, the stability depends on the
zeroes of A(z) (poles of the model) whereas, for the models in
prediction form M̂(ϑ) , the stability depends on the zeroes of
C(z) (poles of the model in prediction form)

• Consider the ARX model in prediction form:

ŷ(t | t− 1) = a1 y(t− 1) + a2 y(t− 1) + · · ·+ an y(t− n)

+b1 u(t− 1) + b2 u(t− 1) + · · ·+ bn u(t− n)

Hence, ŷ(t | t− 1) depends linearly on the parameters ai, bi .
This property is typically exploited in the identification
algorithms
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Models and Predictors: Remarks (cont.)

• Consider the ARXAR model in prediction form:

ŷ(t | t− 1) = [1−A(z)D(z)] y(t) +B(z)D(z)u(t− 1)

Hence:
• For a given D(z) , ŷ(t | t− 1) depends linearly on the parameters
ai, bi

• For given A(z), B(z) , ŷ(t | t− 1) depends linearly on the
parameters di

This property is typically exploited in the identification
algorithms
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Models and Predictors: Remarks (cont.)

• On the other hand, consider a first-order ARMAX model in
prediction form:

ŷ(t | t− 1) =
[
C(z)−A(z)

C(z)

]
y(t) +

B(z)

C(z)
u(t− 1)

But:[
C(z)−A(z)

C(z)

]
=

(a+ c)z−1

1+ cz−1
= (a+ c)z−1 − c(a+ c)z−2 + · · ·

B(z)

C(z)
=

b

1+ cz−1
= b− cbz−1 + · · ·

Hence, ŷ(t | t− 1) depends in a nonlinear on the parameters
ai, bi, ci .

This nonlinear dependence will make the identification
algorithms much more complicated
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Lecture 10
Solution of the Prediction Problem

END
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