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Abstract

This work is concerned with the analysis and the design ofisbinimum-time control laws for
nonlinear discrete-time systems with possibly non rolgustintrollable target sets. We will show that,
given a Lipschitz nonlinear transition map with boundedtomrinputs, the reachability properties of the
target set can be used to assess the existence of a robustghpsiontrollable set which includes the
target in its interior. This result will be exploited to foutate a robustified minimum-time control scheme
capable to ensure the ultimate boundedness of the tragiarpresence of bounded uncertainties even

if the target set is not robust positively controllable.

. INTRODUCTION

The Minimum-time control problem consists in steering tteesof a controlled system from
an initial pointzg € R™ to a given closed seéf C R" (the so-called “target” set) in minimum
time.

The solution of the minimum-time problem is well-known iretbase of linear systems with

compact target sets (see [1], [2], [3], [4], [5], the survaper [6] and the references therein),
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while further investigations are needed both to charaxetie stability properties of nominal

minimum-time control laws in a nonlinear setting, and toigesninimum-time controllers robust

with respect to unmodelled nonlinearities and unknown retledisurbances (see [7] and [8],
[9] for two robust formulations based on dynamic progranmgnand invariant-set theory for

linear systems). Indeed, since the mathematical modelgblsafor the control design are often

subjected to uncertainty and the system may be affected bgemous not measurable inputs
(disturbances) which are not a-priori known, in practice fynthesis of the control scheme is
performed with incomplete informations.

As for the linear case, it can be proven that if the targetseibust positively controllable (i.e.,
the target set can be rendered robust positively invarigrgtdme control law veryfing the input
constraints, [10]), then the nonlinear minimum-time coh&nsures the uniform boundedness
of the closed-loop trajectories for a suitable set of ihit@nditions, [11], [12], [6]. In addition,
we will show that the ultimate boundedness property can begoved even if the target set is
not one-step robust positively controllable, by suitablgdifying the nominal minimum-time
control law. As far as it is known to the authors, the problehgwaranteeing the boundedness
of the trajectories by minimum-time cotrol with non contatille terminal sets has never been
addressed in the current literature.

On the other side, the Minimum-Time control problem, in tl&cete-time nonlinear context,
is stricly connected to the Finite-Horizon Optimal Contiloblem (FHOCP) with terminal
set constraints, that is the optimization scheme which eotiwnal Nonlinear Model Predictive
Control (NMPC) relies on (see e.g. [13], [14], [15], [16] afid'] among the vast literature on
the subject). The NMPC technique consists in solving the EROQepeatedly along system’s
trajectories, with respect to a sequence of control actiammd in applying to the controlled system
only the first control move computed by each optimizatiorthea NMPC framework the terminal
constraint is introduced with the only aim of providing rebgtability guarantees, therefore it is

usually chosen as an arbitrary robust positively contbbdiaet, [18], [19], [20]. The inclusion of
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such a supplementary terminal condition introduces someeawatism and raises the additional
issue of the recursive feasibility with respect to the newstaint (see [21], [22]). Conversely,
in the minimum-time control setting the terminal set représ it by itself the objective of the
control design. If the specified target set is not controhrmant, then, to achieve closed-loop
robustness, the minimum-time control law is usually coreduty imposing a different terminal
constraint, chosen as an invariant subset of the nomingéttaet. In this case, the finite-time
reachability of the target set , as well as the ultimate bedndss of the trajectories, can be
guaranteed by set-theoretic arguments (see [5]). Noresthethe contraction of the target set
represents a conservative provision for achieving thesoioajectory boundedness and the finite-
time reach of the target in absence of uncertainties. Inquéat, the robust stability properties
of the modified minimum-time problem with a restricted temaliregion are achieved at the cost
of a smaller feasible region, that is, a smaller capturerbasi

Exploiting some ideas originally conceived by the authoffigld of NMPC (see [22]), an
alternative design procedure is therefore proposed inwhisk to reduce the conservatism of
the conventionl minimum-time formulation, that allows &tain the original target set without
restrictions. Moreover, when the target is robustly cdidbde, the devised methods guarantees
the same robust performance (minimum reach-time and mdvaahaissible uncertainty for
trajectory boundedness) of standard approaches.

The paper is organized as follows. In Section Il we will inlvgce the notation and some
preliminary technical result. In Section Il the minimumage control problem for nonlinear
systems will be formalized and discussed. In Section |V tloperties of the nominal minimum-
time control, in dependence of its design parameters (watiqular focus on the target set),
will be analyzed. Finally, in Section V, a control schemelviaié proposed to guarantee the
boundedness of the trajectories despite the presence aflbdwncertainties and possibly non

robust positively controllable target sets.
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[l. PRELIMINARIES

In the following, the notation that will be used throughotbetpaper will be introduced,
together with the basic assumptions and the technicaltsethat will be needed to derive the

main theorems.

A. Notation

LetR, R, Z, andZ-, denote the real, the non-negative real, the integer, anddhenegative
integer sets of numbers, respectively. The Euclidean nerdenoted a$- |. Given a signak,
let s, +,) be a sequence defined from timeto timet,. In order to simplify the notation, when
it is inferrable from the context, the subscript of the setugeis omitted. The set of discrete-

time sequences of taking values in some subs®tc R” is denoted byM-~. Moreover let us

define|s|| £ supy=o{|sk|} and|[sp, 1,)|| = sup;, <<, {|5x|}, Wheres,, denotes the value that the
sequence takes on in correspondence with the indexGiven a compact set C R, let 0A
denote the boundary of. Given a vectorr €R”, d(x, A) 2inf {|¢ — 2|, £ € A} is the point-to-set
distance fromz € R™ to A, while ®(z, A) 2 {d(z,0A) if z€ A, —d(z,0A) if v¢ A} denotes
the signed distance function. Given two sets R", B CR", dist(A, B) 2inf {d(¢, A), (€ B}

is the minimal set-to-set distance. The difference betweengiven setsA CRR™ and B CR",
with BC A, is denoted asi\B={z : v € A,v¢ B}. Given two setsA CR", BCR", then the
Pontryagin difference sef is defined as’ =A ~B2 {zc R": 2+£c€ A, VEe€ BY, while the
Minkowski sum set is defined a8=AQB={zcR" : x=¢(+1n, E€ A, n€ B}. Given a vector
neR™ and a positive scalgre R, the closed ball centered ipand of radiusp is denoted as
B (n, p) 2 {£€R™ : | —n|<p}. The shorthand3"(p) is used when the ball is centered in the
origin. A functiona : R>o—R>( belongs to clask if it is continuous, zero at zero, and strictly

increasing. A functiony(-) : R>o — R, belongs to clas¥C (XC-function) if it is continuous,

zero at zero, and strictly increasing.
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B. Basic Assumptions and Definitions

Consider the nonlinear discrete-time dynamic system
Tey1 = f(SUt,Ut) +di, t € ZLso, kg =17 1)
wherez; € R™ denotes the state vectar, the control vector, subject to the constraint

ug € U CR™, (2)

with U compact, andl; € D C R", with D compact, a bounded additive transition uncertainty

vector.

In stating and proving the preliminary technical lemmag] aith the aim of simplifying the
derivation of the main results, let the functigiiz, u) : R" x U — R" verify the following

assumption.

Assumption 1 (Lipschitz)The functionf(:c,u) is Lipschitz (L.) continuous w.rtx € R",

uniformly in u € U, with L. constantL; € Ry, that is, for allz € R" andz’ € R"

|[f(x,u) = f(@' )| < Ly |z — 2|, Yu € U.

Moreover, to prove some results we will also pose the foli@rvassumption.

Assumption 2 (Local Uniform Continuity w.rt): For anyz € R™ the function f(z, u) is

uniformly continuous w.r.tu. € U. That is, for anyu € U and anyu’ € U

~

[f(wu) = fla,a)] < mullu—u']), Vo € R™
wheren,(-) is a K-function. O

Definition 2.1 (Controllability set t&): Given a mapf(x, u) : R"x U — R", with U C R™

compact, and a sét C R, the (one-step) controllability set 8, (C;(Z)) is given by
Ci(2) & {:co € R"Fuy, € U : f(ao, tsy) € E} 3)
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U

Definition 2.2 (Predecessor set 8): Given the mapj(x) : R* — R" and a seE C R", the

(one-step) predecessor &f (P1(Z)) is given by
Pi(Z) £ {z0 € R"[g(0) € E}. (4)
O

Definition 2.3 (-steps Controllability Set t&): Given a mapf(x,u) :R” x U — R", with

U c R™ compact, and a sef C R", thei-steps controllability set t&, (C;(Z)) is given by
Ci(2) £ {zg € R"|Fu,, € U': &(i,2,u,,) €Z}. (5)

that is,C;(Z) is the set o initial states, € R" from which= can be reached in exacsteps.[]

Definition 2.4 {-steps Predecessor &): Given a mapg(z) : R* — R™ and a se& C R",

the i-steps predecessor &f (P;(Z)) is given by
Pi(2) £ {z0 € R"|§'(z0) € Z}. (6)
0

Definition 2.5 {-steps Capture Basin tg8): Given a mapf(x,u) R"x U — R", with U C

R™ compact, and a sé& C R", thei-steps capture basin 8, (Capt,;(=Z)) is given by
Capt,(2) 2 | JGi(2). 7
j=1

that is,Capt,(Z) is the set o initial states, € R™ such that= is reached in at moststeps (i.e.,

Ju,, € U7 : #(j, 70, u,,) € = for at least ongj € [1,...,i — 1], before possibly leaving. O
Moreover, the following property holds for controllabylisets.

Proposition 2.1: Given two sets£; C R" and=; C R”, thenC;(E, UZE;) = C1(Z1) UC1 ().
O

Proof: From Definition 2.1 we have that
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Ci(Z1UZ) 2 {z € R Ju,: f(z,u,) € (21U}
= (£ R Tug: f(ug) € (21))
Ufz € R 3u, : f(a,u,) € (52)}
= Ci(21) UC1(E),
thus proving the statement. [ |
Definition 2.6 (RCd;-RC): A compact se& C R" is Robustly Controllable (RC) under the
map f(z,u), with u € U, if 2 C C; (int(2)).
A compact seE CR" is Robustly Controllable in one-step w.r.t. additive pdrationsd €

B*(d;) (d;-RC) if (Z~B™(d,)) is not empty andECCy(Z~B" (d,)). O

Definition 2.7 (RPI): A compact se& C R" is Robust Positively Invariant (RPI) under the

map g(x), if = C P (int(2)). O

Definition 2.8 (quasi-RPI):A compact seE CR" is quasi-Robust Positively Invariant (RPI)

N
under the magj(z) with maximum return-timeV, if = C |J P; (int(Z)) for some finiteN €
i=1

N
Z~o; that is, for anyzy € |J P; (int(2)), Ji € {1,..., N} : §'(z0) € int(Z). O
=1
Next, some results concerning the properties of robustiyrotiable sets under Lipschitz maps
are given. These intermediate results will be used in Sedioto prove the main contribution

of the present work.

C. Preliminary Technical Results

In stating and deriving the following technical lemmas, tle¢ nominal system'’s transition
map f verify Assumption 1.

Lemma 2.1 (Technical)Given two compact sets; C R", =, € R™ and a positive scalar
d € R, if the following three conditions hold togethel: =; C C(Z,), ii) = C =; andiii)

dist(R"\Z;, Z,) > d, thenZ; is d-RC. O
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Proof: The two conditiongi) andiii) together imply that
Ey C 2 »B(d). (8)

Finally, from the inclusiorE; C C;(=;) and (8) it follows that

[1]

1€ G (51 mB”(d)>,
which proves the statement of the Lemma. [ |

Lemma 2.2 (Technical)Given a compact sét C R", assume that; (=) is non-empty. Then,

for any arbitraryn € R it holds that:
Ve e =2 B" (L}H}) , Juy e U - f(z,u,) € 2@ B (n). (9)

U
Proof: Consider the sef, (=) & B(L};ln). It holds thatvz e (Cl(E) ® B(Lf;m)>, 3¢, €
C1(Z) such that

The inclusioné, € Cy(Z) implies that3ue, € U : f(&,,ue,) € E. Sincef is Lipschitz, then

(2, ue,) — f(&ue,)| < Ly v — &]. From (10), it follows that

f(z,ue,) — (& ue,)| < . (11)

which finally yields to the statement of the Lemma. [ |

Lemma 2.3 (Technical)Given a compact séE C R™ and positive scalap € R., if = is
p-RC, thenC,(Z) is (L};lp)-RC. O
Proof: Consider the seE ¢ B(L;lp). It holds thatV¢ € (= @ B(L};lp)), Jze € E and

Ju,, € U such that|{ — x| gLJ;:p and fA(SCg,Umé) € (EwB"(p)). Let us poseus = u,,. Then,

in view of Assumption 1, it holds thaf (¢, u¢) € Z,V¢ € (2 @ B(L};lp)), which implies that
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GE)2E B(L];lp)) and thatdist(R”\Cl(E),E)ZL;?,O. Finally, thanks to Lemma 2.1, the

statement follows. [ ]

The following technical result will establish the invarigoroperties of theV-steps control-
lability setCy(Z) of a givenp-RC set=. Moreover, an inner (conservative) approximation of

Cn(Z), containing= in its interior, will be provided.

Lemma 2.4 (Technical)Given a compact sé&t C R", a finite integerN € Z-, and a positive
scalarp € R+, if = is p-RC, then
) Cn(Z) is (L;Np)-RC.

1— LY
i) Cn(E) D2 B | —Lp

L; —1
O
Proof: Applying recursively Lemma 2.3, it holds that
dist(R"\C;(Z),C;i1(Z)) > L;;p, Vi € Zy, (12)
with Cy(Z) = =. Therefore we obtain

N - 1-L7N
dist(R™\Cy(2),2) > pS. L' = —Lp (13)

iz I sz -1
Finally, the statement follows from inequality (13) and Lwean 2.1. [ |

The following important result, that will play a key role imaracterizing the robust stability
properties of nonlinear minimum-time control laws, can nog proven. The reader can refer
to Figure 1 for a schematization of the sets involved in tlaeshent and in the proof of the

forthcoming theorem.

Theorem 2.1 §-steps Reachability Implication)Given a compact seE ¢ R"™ and map

A

f(z,u) verifying Assumption 1 and subject to (2), if the followingciusion holds for a finite

integer N € Z-, and for a positive scalgty € R-q:
=C Capty (Z) ~B"(pwn), (14)
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Fig. 1. Scheme of the sets involved in the statement and mio®heorem 2.1Capt , (Z) denotes theéV-steps capture basin
of Z, while Capt  (E,dn) is an extension of the nominal capture basin (see (15)) #matbe proven to be robust positively

controllable. That is, there exists a control law, comgliaith the input constraints, that renddﬁ&ptN(E,EN) RPI.

(i.e., = is reachable in at mosY steps from a set containiri§ in its interior under the nominal

map f(z, u)), then the set

Capty (2. dv) £ Cy(2) U (U cn@eB (L;;m)}) U(a@es(Lm)) @5

1=

is dny-RC, with ; positive scalars depending @l according to the recursion

_ L: —1
dyale
fo (16)
770=PN—EN,
and
mo= Loy —dy, Vi€ {1,...N -2},
]

Proof: Assume, at this stage, that the condition (14) holdsNo#& 1. In this case the set
Capt,(Z,d;) = C,(Z) is d;-RC by definition, withd; = p;.
Now, let us considefN =2 and p; = dist(R™"\C2(Z), Z). Being = C (Capty(Z) v B"(p2)), it

follows that,

April 5, 2011 DRAFT



10

V2 eCy(2), Ju,eU: f(z, uy)€(Capty(Z) ~B™(p2)), (17)
which, in view of Lemma 2.2, implies that
VeeC(E) e B (L}xlno) , JugeU: f(x,up)€(Capty(2) B (ps — ) (18)
for all ny € [0, p2] . Moreover, from the definition of,(=), we recall that
VeeCy(2), Ju,eU: fz,u,)eCi(3), (19)
Now, from (18),(19) and Property 2.1 it follows that

veet@) U [GE) @ B (L'm) |, 3useU: f(z,u,)€C1(E) U [Capty(E) ~B (p2 = m0)]

(20)
that is
GEU[aE @B (L;n)| Ca(CE)UCapty(E) ~B (i —m)] ), (1)
Moreover, ifn, € (0, p2), then it holds that
Ci(2) U [Capty() ~B"(p2 = )] € GE) U [Gi(E) @ B (L;'m)] (22)

Finally, from the topology of the sets involved in the ungary analysis it follows that

dist(R”\ (CQ(E) U [Cl @ B" (L;xlno)D , C1(2) U [Capty(Z) ~B"(p2 — 770)]> > min {L;;??Oa P2 — 770} )

(23)
Now, consider the casg, — 1y = L};lno. Posing
-1 Lz
A~ A —1 _ fa
o = (1+wa) p2 = wa+1/)2
then inequality (23) holds with positive right-hand side:
1
. n — mn —1 — AR 2448 _ — Py =
dist(R"\ (C(2) U e @ 8" (L7'm) | ) . C1(E) U [Capty(2) ~B" (o2 = m)]) 2 po—tio = 1 I
(24)
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In view of Lemma 2.1, (21), (22) and (24) together imply tHag setCapt, (=, ds) = Co(E) U
n —1 . b -
[Cl © B (fo noﬂ is dy-RC, with
- 1
d pu—
2 14+ sz
Now let us consider the cas® = 3 and p; = dist (R"\Capts(Z), Xi). Being = C

pP2-

(Capts(Z) «~B"™(d3)), it follows that
Veely(2), Ju,eU: f(x,uy)e(Capty(Z) ~B"(ps)), (25)
which, in view of Lemma 2.2, implies that
Vel (B) @ B (L;'m), u.€U: flo,u,)€(Capty(2) B (ps — ), (26)

for all ny € [0, ps]. Moreover, from the definition of»(Z) (see (19)) and by exploiting Lemma

2.2, we have that
Veely(E) @ B (L};;n) L JueU: f(z,u.)eCi(Z) @ B (1), 27)
for all n € Rs. Finally, from the definition oC;(=Z), we have that
VaeCs(2), Ju,eU: f(z,u,)eCa(2), (28)

From (26), (27), (28) and thanks to Property 2.1, then thiewiehg inclusion holds

(@)U (GE @B (L)) U () @B (L))

(29)
cala@u(aEeBm )u(Capty(E)B"(os - )
Moreover, ifn > 0, n < fo“m andn, € (0, p3), then the following inclusion holds
C(2) U (Gi(E) @ B() ) U (Capty(2) ~B"(ps — 1)) 0)
C C4(2) U (CQ(E) o B (L;zln» U (cl(z) ® B (L};zlno))
Finally, from the topology of the sets involved it turns obhat
dist <R”\ C4(2) U (CQ(E) o B (lejn)) U (Cl(E) o B (L];wln())) ] ,
[@(E) U(eE@ eBm)) U (Capty() ~B"(ps - no>)]) (1)

> min {ps — o, Lj?lno -, Lj?ln}
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Choosingny andn such that all the three terms in the right-hand side of (32)equal, then
inequality (31) holds with positive right-hand side.

Thanks to Lemma 2.1, then (29), (30) and (31) together imipat the setCapts(=, d3) =
C5(2)U (CQ(E) ® B (L];;n)) U (cl(z) ® B (L];;%)) is ds-RCWith dy = (12 +L;, +1)"'ps.
Now, we seek for a generalization of the three-step anafjisise to the generity > 3 case.

Let py = dist (R™\Capty(Z),Z) > 0. Being= C (Capty () «~ B"(dy)), it follows that

VzeCy(2), Ju,eU: f(z,u,)e(Capty(2) B (py)),

(32)
which, in view of Lemma 2.2, implies
veeCi(2) @ B (L), 3w el: f(z,w)e(Cn(E) B oy —m),  (33)
for all 7y € [0, pny]. Now, let us consider the sef5(=) andC;.(Z), with ¢ € {1,..., N — 2}.
By exploiting Lemma 2.2, we have that
V€€ (2) @ B (L), Jua€U: [z, u,) €C(Z) @ B ny) (34)
for all n; € R>o. By using, again, Lemma 2.2, we obtain
Vaeln(2), Ju, eU: fz,uy)eCn_1(Z), (35)

From (33), (34), (35), thanks to Property 2.1, it followsttha
N-2
Cx () U <U1 [cm(z) @ B L;m)}) U (cl(z) ® B (L];;m))

s (36)
ce, (cN (3)U ( JEes <m>J> U (Capty(2) B (ox no>)>-

Moreover, if 15, € (0,pn), m < L; 'mo andn < L; ~'niq, Vi € {1,...,N — 2}, with

n; € Ryg, Vi € {1,..., N — 2}, then the following inclusion holds

Cxa(E)U (U CE o8 <m>]> U (Capt () ~B" (o — m))

i=1

CCy(E)U <

=

-2

(37)
[CZ-H(E) & B (L};j@}) U (cl(E) & B <LJ;:770)> .

.
Il
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Finally, from the topology of the sets involved it turns obat
N—-2
Cn(E)U <U [Q’H(E) © B (Lj_leniﬂ) Y (Cl(E) © B (LEUO)> ] ;

i=1

dist (R"\

> min {pN =10, L0 = s D i = iy L s — L;;mvfa}
Choosingny andn;, ¢ € {1,..., N — 2} such that all theV terms in the right-hand side of (38)
are equal, then inequality (38) holds with positive righn side.
Hence, in view of Lemma 2.1, (36), (37) and (38) together intpat the set (extended-steps

capture basin)

N-2
Capty(Z,dy) £ Cy(E) U (U [CiJrl(E) ®B (%:m)}) U (Cl(E) ®B (L}:%)) (39)
i=1
is dn-RC, with
e N T
dN = ; LZAI PN = Lj;z _ le (40)

Remark 2.1:Note that, if the target se€f is not p-RC, then the regiont Capty(Z)\Cn(Z) )
may even be not empty. In this case, for any initial condifiori Capt, (2)\Cn(Z) ), the state
cannot be driven t& in exact/NV steps, bu& can be reached for somewith i < N from the
capture basin. Therefore, condition (14) (reachabilitaimmost/N steps) is less restrictive than

requiring the exactV-steps controllability of=. O

[1l. PROBLEM STATEMENT

The minimum-time problem for discrete-time system not @##d by uncertainties has the
following well known formulation: given an initial state, € R™ and a target se€E C R",
find a sequence of control actions € M which minimizes the timél’,r(z0|Z) such that

Z(xo, Tnyr,u) € Z. In the following we will denote ag’y,(xo|=) the minimum reach time.
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The above formulation is commonly referred to as the opep-lapproach to the minimum-
time problem, that is, an optimal control sequence is datexdchon the basis of the particular
initial state, relying on a nominal model of the controllggtem. In the linear framework, it is
well-known that the minimum-time problem admits a feedbsaalution, that is, it is possible to
determine a control function = xy;r(z|Z) such thatTy,r(:|Z) is minimized for any possible
initial state. We point out the minimum-time control law,(-|=) is not, in general, unique.
Therefore, for the sake of the present discussion, theiootaf,r(x|=) will denote an arbitrary

selection among the possible minimum-time feedback laws.

In nominal conditions, open-loop and feedback formulatiane equivalent in the sense that
a feedback solution is optimal if and only if for any initialagesx, the control sequenca
produced by the contrak = xyr(x,Z) along the systems’trajectory is optimal in the open-
loop sense. On the other side, the feedback approach allewsamembed in the design of the
controller some a priori information on the disturbancasartainties, yielding to minimum-time
control laws with enhanced robustness properties. Howdwerl generic nonlinear system, it
is very difficult to obtain an explicit minimum-time contrélinction, even in the nominal case.
Moreover, in practice, the search for a minimum-time opmyplsequence is performed over a
compact set of sequences of finite length, subsuming a sgécipper boundV € Z-.

A viable solution to alleviate the lack of robustness of ofmyp approaches consists in
solving, along system trajectories, a finite-time optirticga problem in a receding horizon
(RH) fashion. In the sequel, we will determine sufficient dibions (related, in particular, the
controllability and reachability properties of the target) under which the RH implementation
guarantees the recursive feasibility of the optimizatithrat(is, the robust postive invariance or

the quasi-invariance of the feasible region) and the bodimeles of the closed-loop trajectories.

Problem 3.1 (RH Nominal Minimum-Time Controkgiven a compact admissible gétC R™

for the input of the system (1), a compact target=et R", a finite integerN € Z-, and the
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nominal state-transition maﬁ(x, u) of the system, at each timec Z-, determine a sequence
ui g = {uw ulhs - - ug v} in correspondence of the current state measuremestich
that:

Tyyr (2, U Ny 2, N) = Tyr(:|2),

with
Tz (o, U[t,t+N—1}|E> N) £ min {T e{l,....,N}:i(r,z, u[t,tJrTfl]) € E}, (41)
and
Ty (74| Z) = min {TNMT(%a u[t,t+N*1]|Ev N)},
up i n—1)€UN
then apply to the plant the first elementmgHNfl] by settingu; = uy. O

If the Problem 3.1 is feasible in;, thenuy is a selection among the admissible minimum-time

control actions for the current state, i.ef, € Kyr(x|=).

This problem can be solved, in the discrete-time framewbykchecking the feasibility of
the target set constraint in (41). The feasibility checkrapph consists in embedding Problem

3.1 into a family of input-constrained minimum-distancelgems as follows:

I (22, 7) =  min (I)(i’(T,xt,u[t7t+T,1}),E). (42)

Uit t+7-1]€UT
parametrized by the integer € Z-.,. For a givenr, the minimizer is a fixed-length sequence
u; 4.1 belonging to the compact sét'.
The feasible region for the original problem 3.1 is the basircaptureCapt (=), which
verifies

Capty(Z) ={z: € R"| 37€{1,...,N}: J3p(x,=,7) <0}.

Then, assuming that; € Capt,(Z), at each timet > 0 the optimal timeTy, (xZ) is

determined as the minimum among= {1,..., N} for which problem (42) yields to

Jyp(zdZ2,7) <0, 43)

April 5, 2011 DRAFT



16

that is
Ty (2|Z) = min {7 : Jip(x:|E, 7) < 0}
The conditionJg, ,(x:|=, 7) < 0 represents a feasibility test aimed to ensure thdtelongs to
the T-steps capture basin &.
Once the minimum-tim&7,(x;|=) has been determined, we can take as a solution any control

sequence which may steer the stateston 77, (z;|=) steps. A simple choice is

2, T (wi]2)) (44)

uf, o =y_q] = arg min Jy (xt
[T, (x| E)—1] o 1= YMD
e “[t,t+T1‘(4T<xt\E)—11GUTMTM“)
It is important to determine those conditions under whic¢hartgg fromz, € Capt(=Z), the
trajectories remain in the feasible set, in order to guaenihe solvability of the optimization

at each timeg > 0.

IV. RECURSIVE FEASIBILITY UNDER THE NOMINAL NONLINEAR
MINIMUM-TIME CONTROL WITH ROBUST POSITIVELY CONTROLLABLE

TARGET SET

In case the target sét is robust positively controllable (i.e., there exists amasible control
law which renders= RPI), then theN —steps basin of captur€apt, (=) coincides with the
N-steps controllability set oE. MoreoverCapt (=) is RPI under the minimum-time control,

as formally stated by the following theorem.

Theorem 4.1% p-RC — Capty(Z) RPI): Given ap—RC compact target sei C R”, then
the Nominal nonlinear Minimum-Time Controt,,r(x;) guarantees the boundedness of the
closed-loop trajectories within the s€tpt, (=), for any initial conditionz, € Capty(Z) and
for any admissible uncertainty realizatiohe M gn(q,), With dy = LJ;ZN PN -

Moreover, the closed-loop trajectories starting at time 0 from any pointz(0) = z, €

Capt (Z) are ultimately bounded in the compact set

LY —1

Jx
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which is reached in finite time, for any possible realizatadrthe uncertaintiesd € Mpn(q,)),
that is, z(t, zo, ups—11, djo—1)) € YW (E, ||dpe-1|]) € TN (E,dN), Vo € Capty(2), VI > N,
Vdoe—1) ¢ [|dpo—1y]| < du. O

Proof: First, the boundedness of the trajectories can be provemdyisg thatCapt (=)
is RPI under the minimum-time control for arnyc Mgn(q,,).

Indeed, applying recursively Theorem 2.3, it holds that
Ci(E) D Cia(3), Vi>1,

which yields to

that finally implies

Cn(Z) = Capty (). (46)

Moreover, thanks to Point) of Lemma 2.4, it holds thaCy_1(Z) € Cy(Z) mB”(L};sz),
which, thanks to (46), implies thatr € Capty(2), u = kyr(z) : flz,u) +d € Capty(2),
Vd € B"(L];;Vp) (that is, Capt 5 (Z) is RPI unders 7 (x)).

Now, we will prove the ultimate boundedness of the trajeetoin the setl (=, dy). Let
us consider the optimal minimum-time sequemge, ), computed in open-loop at time= 0
for the initial conditionz, € Capt(Z), and the correspondent nominal finite-time trajectory
(i, o, u‘fo’i_”),w € {1,..., N}. The true evolution of the perturbed system, driveml%yN_u,

can be bounded by

Li —1
|2(4, 2o, Ufp;—17) — 2(t, o, Ufp ;1) djoi—17)| < Lf —lldpinll, i e {1,.... N} (47)
i

for any admissible realization of the uncertainiigg; ;). In particular, since: (1V, zo, ufo,N—u) €

=, we have that
L}Y -1
ZC(N, SCo,u([)(],Nil],d[o’N_u) € E@Bn = ||d[O,N—1]H Q TN(E,dN). (48)

Ly —1
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If, in addition,

d|| < LJ}Np, then the closed-loop trajectories remain in the feasible(in
particular, z; € Capt(Z)). At time ¢ = 1, the minimum-time control problem im; can be
solved with respect to a new open-loop sequence of comn‘[plj%. Proceeding along the same

lines as above, it is possible to bound the finite-time pbedrevolution of the system as follows

LY —1
(N + 1,21, y),dpp,v) €EED B” < ! ||d[1,N]H> C Tn(E dn). (49)

L; —1
Moreover,z, € Capt(Z) for any possible uncertainty realization. By inductionfaliows that

the closed loop trajectories remain bounded(in(=, dy) for anyt > N, [ |

Now, our analysis will be extended to the case in whicls not one step robust positively
controllable. In this regard, the result of Theorem 2.1,aot#d by set-invariance theoretic
analysis, implies the existence of a (possibly non uniguwejtrol law which renders the set
Capty(Z,dy) ady-RPI set, withdy defined in (16). However, for non null-uncertainties, the
setCapt y(Z, dy) is such thaCapt (2, dy) D Capt (Z). Recalling the the feasible region for
Problem 3.1 is as small &apt (=), in the setCapt (=, dy)\Capty(Z) the finite-time RH
problem does not admit a solution (i.e., the feasibilitya@hé43) fails). Therefore, we seek for
a backup control law to be applied {@apt (=, dy) when the minimum-time problem is not
solvable, but capable to keep the trajectories boundedeane#tendedV-steps capture basin
Capty(Z,dy). Notably, by Theorem 2.1 we have established the existeh@e amntrol law,
compliant with the input constraints, capable to achievs task. We are now on the way to

show how such a robust control law can be obtained.

V. ROBUST NONLINEAR MINIMUM-TIME CONTROL LAWS WITH NON ROBUST
POSITIVELY CONTROLLABLE TARGET SETS

In the following, we are going to describe a modified minimtime control scheme, which
will be referred to as Robustified Nonlinear Minimum-Timer@w| (RNMT), that guarantees the

guasi-invariance of the feasible region, despite boundegtainties and with mild assumptions
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on the target seE. The RNMT control, computed online according to Procedute elow,
consists in a control schemes that switches between thdaregunimum-time control and
a backup control action when transitory unfeasibility asgunence, in nominal conditions, the
RNMT corresponds to the convential receding horizon mimm¥tume control, being the feasible
region invariant in this case. Conversley, in perturbeddaomns, the backup control action is
taken from a buffer in which a time-optimal control sequehegl been saved after the most
recent feasible optimization. The key point of this proaeds that feasbility is recovered before
buffer overrun occurs. As long as the system’s state ertterfetisible region, an optimal solution
is computed and the buffer is reinitialized with a new segeethat will be used to cope with
future infeasibility occurences.

Next, the RNMT scheme is formalized by a listed procedurecrgisng the actions to be

performed by the controller.

Procedure 5.1 (RNMT)Let the controller be equipped with two buffers: u® € R™ x N,
used to store a sequence Mfcontrol actions;i) T° € Z, that stores the time instant in which
the sequence stored it had been computed. Moreover, let us denote-aa data assignment
operation. Given the buffer (memory array), let u’(i) represent thé-th element of the array,

with i € {1,..., N}.

Initialization

1 Assuming that, at time instant= 0, the initial condition verifiest, € Capt (=), solve the
nominal minimum-time Problem 3.1 obtaining an optimal cohtequencexj _;

2 storeu’ < uf y_;;

3 storeT? < 0;

4 applyu, = ub(1) to the plant.
On-line Control Computation
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givenz,, perform the feasibility test (43) for € {1,..., N};
if exists at least one for which Jg,,(x:|=, 7) <0, then
computeug,, y_; With (44) ;

. b .
overwrite the buffea” <— u?, v _;;

o 0o B~ W N

setT’ + t;

7 end if;

8  applyu, = u’(t —T° + 1) to the plant;
9 end for,

0

The following theorem formally states the recursive feidisybproperty (that is, the quasi-

invariance of the feasible region) of the RNMT scheme forrued additive uncertainties.

Theorem 5.1 (Quasi-invariance of the feasible s@&@)ven a compact target seI C R”"
(possibly not robustly controllable) such thatC Capty(Z) « B™(py), then, for any initial
conditionzy € Capty(Z), the RNMT controlu; = kgrnur(t, x;) guarantees that the closed-
loop system'’s trajectory is ultimately containedGapt (2, dy) for any admissible uncertainty
realizationd € Mgy, With dy given by (16). Moreover, the compact s¥ty (=, dy) C
Capty(Z) (defined in (51) below) is reached in finite-time frasp and is quasi-RPI in closed-

loop, for any possible realization of the uncertainties. O

Proof: The quasi-invariance result can be obtained by inductidrergr, € Capt (=),
the optimal minimum-time sequenca[oovTﬁlT(xo)fl] computed at timet = 0 vyields to

Z(Tyy7(20), To, ufy Tmm)f”) € = for the nominal trajectory. Now, the true trajectory deayt
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from x, is bounded in a closed envelope around the nominal one, fferaak 1, ..., 7% (xo)}

l‘(t, Zo, u([)()’tfl}a d[O,tfl}) - :i'(ta Lo, u[o(],tfl])

Ly -1,
< F (7(@) + l1dpoe—ll) - (50)
Lt —1_
~ i dNa
wa —1
for any bounded sequenek 1o (1,)-1 € (B”(EN))T&T(IO). At time t = T¢,(z) we have

(T (o), xo, Ul 7o (20)—1]) dpo,re, . (z0)-11) — Z(T5s7(20), %o, UC[)O,T]‘CIT(xo)—l})
ijﬁfT(mO) -1

fa 3
< == —djy.
L; —1
Now, defining the set
- L —1_
=,dy) 2 ZoB" LA 1
Tn(E dn) © B jemax L, - 1dN (51)
it holds that
Tre =X (TﬁjT(fL‘O)ax()a u([)O,TI‘\’/IT(:co)fl]> S TN(EaaN) C CaptN(E) (52)

under the closed-loop RNMT control. In view of the inclusi¢gh2) , at time 7§ =
Tyr(zo) a feasible time-optimal sequence can be computed, and thne saguments can
be used to show that the perturbed closed-loop trajectonyartieg from z7. verifies
x (TJ(CIT(SCT(S’)?xTé” u[Tg,TﬁfT@Tg))fu) € Tn(E dw).

Therefore, the return-time t@apt (=) from a pointz, with minimum-time7§ = 77¢,,(zo)
never exceedes the minimum-time itself. This key resulildsthes the inherent buffer-underrun
consistency of the RNMT scheme. Proceeding by inductioriplibws that the compact set
T (Z,dy) C Capty(Z) and the feasible sétapt (=) are both quasi-RPI (see Definition 2.8)
under the closed-loop trajectories with maximum retunnetiV.

Now, we will prove that the trajectories are confinedGapt (=, dy) during the transitory

departures fronCapt 5 (Z) . The seCapt (2, dy), defined in (15), can be equivalently expressed
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as

Capty(E,dy) = Cn(2) U <U Cin(E) @B (%Ll)]) U (Ci(E) ® B (e1)) (53)

where _
A 1 L}V_Z -
i — L7 i—1 — = d 5
€ 7, i1 7. 1w

foralli e {1,...,N —1}. Since by (50) it holds that

.T(Z, Zo, u[007t_1]7 d[O,t—l]) - :AC(IZ T, u[007t_1]) < EN—i, (54)

foralli e {1,...,N — 1}, and andf:(z’,xo,u‘fo,t_u € Cy_y), Vie{l,...,N — 1} then we can

conlude that

ZE(Z, L0, u([)O,t—l}a d[O,tfl]) S CN—Z(E) © B (EN—i) - CaptN(EaaN)a Vi€ {17 SRR N — 1} (55)

Proceeding by induction, it follows that the closed-loogjdctories are ultimately confined in

Capt (2, dy). u

Notice that the ultimate confinement propertyGapt , (Z, dy), together with the quasi-robust
positive invariance of the compact S€k (=, dy), they by themselves do not imply the ultimate
boundedness of the trajectories, siriéept (=, dy) can be unbounded. The boundedness in a
compact subset ofapt (=, dy) can be proven by invoking the further Assumption 2 and by

exploiting the the presence of input contraints.

Corollary 5.1 (Ultimate boundedness)f the nominal transition function of the systen,
verifies, in addition to Assumptions of Theorem 5.1, theHartAssumption 2,d € M. ;,),
then the closed-loop trajectories under the RNMT contreldtimately bounded in a compact
set Ay(Z,dy,u) (defined in (56) below) for any initial conditiom, € Capty(Z), that
is: x(t, w0, upy-1),dps-1]) € AN(Z,dy,T), Yoo € Capty(Z,dy), Vt > N, Vd—1)

|dp—1l] < dy. U
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Proof: First, note that the sef y(Z,dy) is reached in finite-time (in at mosY steps).
Hence, for somek € {1,...,N} we have thatr, € Tx(Z,dy). Moreover, by the quasi-
invariance property, the trajectories departing frejrare guaranteed to enter agaiin (2, dy)
in at most furtherV steps. Let us analyze the closed-loop perturbed trajeetaryfor the worst-

case-length interval in which the trajectories may livesmg Y v (=, dy). We have that, for any

jed{l,...,N},
_ L -1
(K + gy ps W k1), A1) < L k] + Lff — (nulllage ks nll) + lldgerssll)
, Lf —1 B
< L || + L; — (m(@) +d).
wheret = max,cy/{|u|} Therefore, for anyj € {1,..., N}, the trajectories remain bounded in

jeﬁf???iv}{ I _1(m<u>+dN)}>.(56)

fz

The ultimate boundedness of the closed-loop trajectoridisws from the compactness of

AN(EaaNaﬂ)- [ |

VI. ACADEMIC EXAMPLE

To show the effectiveness of the method, we will apply theustified nonlinear minimum-time

control to the following discrete-time open-loop unstagjstem:

Ty = T, [1.1 + 0.4 sign(x(l)t)ut} + ($(2)t2 +2) 7y + day, te7 (57)
I >0-

Ty = 0942, — Te), w +de),

subjected to the input constraint,| < 2. The subscript$i), i € {1,2} in (57) denote the-th
component ofr, € R?, while d;, € R? is a bounded exogenous disturbance. First, we will prove
that the nominal transition function of the system is Ligscktontinuous with respect to the

state variables.
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Proposition 6.1: The nonlinear transition functiorf(z,u) : R? x [-R,R] — R2, with

flaw) = (J (@) 2w, foy(ze).w) given by

f(l)(ZE(l), u) = Z(1) [1.1 +0.4 sign(x(l))u] + (l‘(g)z + 2)*1u, (58)

~

foy(z@),u) = 0.942p) — 1) u
is Lipschitz continuous in:, uniformly for v € [—2,2].
Proof: Consider the scalar functiofi) (z(, z(2), u) : R* x [~2,2] — R. Then, given two

points (1), z(2)) and (z,), 2(y)) = (x() + 62(1), () + 52(z)), for any fixedu we have

f(l)(xl(l) x(Q ) ) f(l( 1)7 2)t7u)’

1
u
(T@) +0m())* +2

< (x(l) -+ 51’(1)) [1.1 +04 sign(:c(l) —+ 5x(1))u} —+
5

—=U

l‘(1)2 + 2

< ’(l‘(l) + 5:E(1)) (1.1 +0.4 sign(x(l) + 51‘(1))U) — T(1) (1.1 +0.4 sign(x(l)u))

—zqy (1.1 4 0.4sign(zq))u) +

+ (@) +02)? +2) " u— (ze)® +2)"

Being < 0.23, Vz(9) € R, we have that

Ox2) (T(2))? + 2

@y 2@ u) - f(1>($<1>a$<2)tau)’

< }x(1)0.4 (sign(x(l) + 0x(1)) — sign(x(l))) u+ 0z ) (1.1 + 0.4 sign(zq) + 5:10(1))) u’
+0.23|0z(2)u|

< |za)| |sign(zay + 6za)) — sign(z))| 0.8 + |6z | 3+ 0.46[0z )|
Note that, if |z;)| > |6z, then the first addend in the right-hand side of the last inktyu
becomes null, and thereforbﬂl (@1 Ty ) = foy (), 7 (2), u)} < 3|6z + 0.46|6z ).
Conversely, when|zy| < |6z, we have that‘f Ty Ty 1) — (), 2, u)‘ <
4.6 |6z (1)| + 0.46|6z()|. Moreover, it holds that‘f@) (), 1) — f(g)(x(l),u)‘ < 2.94\5:5(2)\.
Finally, the global upper bound for the Lipschitz constdrthe transition functiory is Ly =4.6.
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200 N =5

150

100

T2

50

-50[(—0.5, —40)

Fig. 2. Sample closed-loop trajectories under th RMNT amritr nominal conditions

Figure 2 shows some sample closed-loop trajectories in malnoonditions (i.e.d; = 0,Vt €

Z>p) for N =5 and with target set

10 0
0 10

r <1

= ={zeR?: T

The RNMT strategy, in the nominal case, steers the statetlmtdarget set in minimum-time.
Being =, robustly controllable, then the inclusiocE C Capt;(=) holds; therefore, the
theoretical results obtained so far can be used to asserbdbedability of the trajectories
by RNMT control in the uncertain/pertubed case. Since actiexplicit computation of the
set Capt; (=) is difficult to obtain, even for the small-dimensional systef this example, in
general it is very difficult to compute good approximatiortlodé maximal admissible uncertainty,
that has to be evaluated by simulations. In presence of lemlrekogenous perturbations
l|d|| < 10v/2,Vt € {0,...,100}, we will analyze the trajectory departing from the feasible
initial conditionzy = (3, 8). Figure 3 shows that the RNMT control keeps the system’sughool

bounded despite the disturbance. The values of the minimitame function returned by the

April 5, 2011 DRAFT



26

900F T\ q
800
700
600

500

2

8
400 unfeasible points

300 a
200 a
100 a
0 i
6 é 1‘0 1‘5 2‘0 - 2‘5 3‘0 3‘5 4‘0 4‘5 5‘0
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Fig. 3. Cloud of points obtained by simulating the closeoplaystem with bounded perturbations. The transitory wilbdaies

occurring in presence of disturbances are marked by cirglles feasibility is always recovered in finite-time.

optimization performed along the system’s trajectory drews in Figure 4.

A es coe - ee e cesss . eecseessctens s ae s we se s.see s seess  os sssesssscsce see b e eo eess]

§ 3 . cesesen oo e o ee ee-ss ses sesssses weee o e e as- e se e
&~
= 2+ . . . -
1 - -
or @ @ @ 0 @ -
0 10 20 30 40 50 60 70 80 90 100
t

Fig. 4. Values of the minimum-time function retruned by th@imization along the system’s trajectory. The circlesrespnt

unfeasible optimization, that is, the target set cannotdaehred withinV steps from the correspondent state.
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Several unfeasible points have been reached during theriegrd. We remark that the

convenional minimum-time control would not have been abledpe with those unfeasibilities.

To complete the analysis, nominal trajectories obtaineith @inon robust positively control-

lable target=,, given by

T

Ey={ z€R?: |z — 0 100 T — 0 <1
1.1 0 10 1.1

are shown in Figure 5, foN = 20.

T2
o [ N w I (6] ()] ~ ] [{e]
L]

|
=

T

1

Fig. 5. Sample closed-loop trajectories under the RMNT rabrib nominal conditions, with a non robustly controllaliégget
setZ,. From the initial pointzo = (—1.22,0.6) € =, the state cannot be kept insi@2 with the available control input. The

trajectories asymptotically reach a triangle-shapedtioycle condition which temporarily leaves the target set

The trajectories departing from all the considered initation points asymptotically reach a
triangle-shaped limit-cycle condition, that temporastyists from the target set.
Even in this case, the RNMT can face exogenous perturbaté@nshown in Figure 6 , where

a bounded disturbancgd,|| < v/2,Vt € {0,...,100}) has been simulated.
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T2
N al
T

Fig. 6. Sample closed-loop trajectory under th RMNT contwih bounded perturbations. The trajectory remains bodride

perturbed conditions despite a non robust positively otiatole target set has been used

VII. CONCLUSION

In this work we have proposed a robustified minimum-time cmnscheme for nonlinear
discrete-time systems with input constraints that adm@s robustly controllable target sets.
Given a Lipschitz nonlinear transition map with hard coaisits on control inputs, the
reachability properties of the target set have been usesdstsa the robustness of the minimum-
time control. In particular, the recursive feasibility dfet scheme is preserved with non robust

positively controllable target set and in presence of bedneikogenous disturbances.
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