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a b s t r a c t

This paper presents a fault detection and isolation (FDI) scheme for a class of Lipschitz nonlinear systems
with nonlinear and unstructuredmodeling uncertainty. This significantly extends previous results by con-
sidering amore general class of system nonlinearities which aremodeled as functions of the system input
and partially measurable state variables. A new FDI method is developed using adaptive estimation tech-
niques. The FDI architecture consists of a fault detection estimator and a bank of fault isolation estimators.
The fault detectability and isolability conditions, characterizing the class of faults that are detectable and
isolable by the proposed scheme, are rigorously established. The fault isolability condition is derived via
the so-called fault mismatch functions, which are defined to characterize the mutual difference between
pairs of possible faults. A simulation example of a single-link flexible joint robot is used to illustrate the
effectiveness of the proposed scheme.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been significant research activity in
the design and analysis of fault diagnosis and accommodation
schemes (Blanke, Kinnaert, Lunze, & Staroswiecki, 2006; Chen &
Patton, 1999; Frank, 1990; Gertler, 1998; Isermann, 2006). Consid-
erable effort has been devoted to fault diagnosis of nonlinear sys-
tems under various kinds of assumptions and fault scenarios (see,
for instance Floquet, Barbot, & Perruquetti, 2004; Garciá & Frank,
1997; Hammouri, Kinnaert, & El Yaagoubi, 1999; Krishnaswami &
Rizzoni, 1997; Mhaskar, McFall, Gani, Christofides, & Davis, 2008;
De Persis & Isidori, 2001; Wang, Huang, & Daley, 1997; Yan & Ed-
wards, 2007; Zhang, Polycarpou, & Parisini, 2002, and the refer-
ences cited therein).
The idea of using adaptive and learning techniques in fault

diagnosis and accommodation has been presented in Jiang,
Staroswiechi, and Cocquempot (2004), Kabore and Wang (2001),

I The material in this paper was partially presented at 7th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Processes, Barcelona, Spain,
June 30–July 3, 2009. This paper was recommended for publication in revised form
by Associate EditorMichael A. Henson under the direction of Editor Frank Allgöwer.
∗ Corresponding author. Tel.: +39 040 5587138, +39 335 8294017; fax: +39 040
5583460.
E-mail addresses: xiaodong.zhang@wright.edu (X. Zhang), mpolycar@ucy.ac.cy

(M.M. Polycarpou), t.parisini@paperplaza.net (T. Parisini).

Polycarpou and Helmicki (1995), Tang, Tao, and Joshi (2007), Tao,
Joshi, and Ma (2001), Vemuri and Polycarpou (1997), Wang et al.
(1997), Xu and Zhang (2004), Zhang, Polycarpou, and Parisini
(2001), Zhang, Parisini, and Polycarpou (2005). In previous pa-
pers, Vemuri and Polycarpou (1997), Zhang et al. (2005), Zhang
et al. (2001), the authors developed an adaptive approximation
based fault diagnosis methodology for a class of nonlinear sys-
tems in which the known nonlinearity is represented as a function
of measurable system signals (i.e., system input and output vari-
ables). It is assumed that there exists a diffeomorphism that can
transformmore general nonlinear systems into the class of systems
under consideration.
In this paper, we extend the previous results by considering

a more general class of nonlinear systems without the need of a
diffeomorphism. More specifically, the known nonlinearity under
consideration is modeled as a nonlinear function of the system in-
put and state variables and satisfies a Lipschitz condition. With
partially measurable states and the possible presence of unstruc-
tured modeling uncertainty, the design of fault diagnosis meth-
ods for such Lipschitz nonlinear systems is a challenging problem.
Several researchers have investigated this problem and pre-
sented some interesting results under the framework of structured
modeling uncertainty and faults. For instance, Vijayaraghavan, Ra-
jamani, and Bokor (2007) addressed the sensor fault diagnosis
problem by assuming the absence of modeling uncertainty, and
in Chen and Saif (2007), Yan and Edwards (2007) sliding mode
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observer based fault estimation methods were proposed under
certain assumptions on the distribution matrices of the structured
modeling uncertainty and faults. However, in many practical sys-
tems, the modeling uncertainty and the fault function are often
unstructured, which makes it difficult to achieve robustness of the
fault diagnosis methodology.
In this research work, we develop a new adaptive approxima-

tion based fault diagnosis scheme for a class of Lipschitz nonlin-
ear systems with possibly nonlinear and unstructured modeling
uncertainty. Unstructured modeling uncertainty refers to the case
where the modeling uncertainty function appears possibly in all
state equations without being pre-multiplied by a known distri-
bution matrix that satisfies certain conditions. The objective is to
detect any faults as soon as possible and to determine whether a
particular fault type in a partially known nonlinear fault set has
occurred. The FDI architecture consists of a fault detection estima-
tor (FDE) and a bank of fault isolation estimators (FIEs). The occur-
rence of a fault is detected if at least one component of the output
estimation error generated by the FDE exceeds the corresponding
adaptive threshold, which is derived analytically. Each FIE is de-
signed based on the functional structure of a particular fault. The
adaptive thresholds for fault isolation are designed, such that, if a
particular fault occurs, then each component of the residual vec-
tor generated by the corresponding FIE always remains below its
adaptive threshold, therefore avoiding false alarms. Some prelim-
inary results of this research work have been presented in Zhang,
Polycarpou, and Parisini (2009).
The fault diagnosis method is presented with a rigorous ana-

lytical framework aimed at characterizing the properties the diag-
nostic scheme. The analysis of the fault diagnosis scheme focuses
on: (i) determining adaptive thresholds for fault detection and iso-
lation; (ii) deriving fault detectability conditions characterizing the
class of faults that can be detected; (iii) deriving fault isolability
conditions characterizing the class of faults that can be isolated by
the proposed method. The fault isolability condition is rigorously
established based on the so-called fault mismatch function, which
provides a suitable measure of the mutual ‘‘difference’’ between
possible faults (see Zhang et al. (2002)).
The paper is organized as follows. In Section 2, the problem of

nonlinear fault diagnosis is formulated. The FDI architecture and
the fault detection scheme are presented in Section 3. In Section 4,
the derivation of adaptive thresholds for robust fault isolation is
given, while the fault isolability condition is analyzed in Section 5.
Section 6 describes a simulation example of a single-link robotic
arm with a revolute elastic joint, illustrating the effectiveness of
the robust FDI scheme. Finally, Section 7 presents some concluding
remarks.

2. Problem formulation

Consider a class of nonlinearmulti-input–multi-output (MIMO)
dynamic systems described by

ẋ = Ax+ ζ (x, u)+ ϕ(x, u, t)+ β(t − T0)Dφ(y, u)
y = Cx (1)

where x ∈ <n is the system state vector, u ∈ <m is the input
vector, y ∈ <p is the output vector (n ≥ p), ζ : <n × <m 7→ <n,
ϕ : <n ×<m ×<+ 7→ <n, φ : <p ×<m 7→ <q are smooth vector
fields. The constant matrices D ∈ <n×q and C ∈ <p×n with q ≤ p
are of full rank, and (A, C) is an observable pair. The model given
by

ẋN = AxN + ζ (xN , u)
yN = CxN
is the known nominal system model. The vector field ϕ appearing
in (1) represents the modeling uncertainty, and β(t − T0)Dφ(y, u)
denotes the changes in the system dynamics due to the occurrence

of a fault (Vemuri & Polycarpou, 1997). Specifically, β(t − T0) is
the time profile of a fault which occurs at some unknown time
T0, φ(y, u) represents the nonlinear fault function, and D is a fault
distribution matrix.
In this paper,we only consider the case of abrupt (sudden) faults

(for some results on incipient faults, see Demetriou and Polycarpou
(1998), Zhang et al. (2002)); therefore, β(·) takes on the form of a
step function. Moreover, the design and analysis in this paper is
based on the assumption that only a single fault occurs.

Assumption 1. The fault distribution matrix D in (1) satisfies
• rank(CD) = q
• invariant zeros of (A,D,C) lie in the left half plane.

As described in Edwards, Spurgeon, and Patton (2000), under
Assumption 1, there exists a linear transformation of coordinates
z = Tx = [z>1 z

>

2 ]
> with z1 ∈ <(n−p) and z2 ∈ <p, such that

• TAT−1 =
[

A11 A12
A21 A22

]
, where the matrixA11 ∈ <

(n−p)×(n−p) is
Hurwitz stable.
• TD =

[
0
D2

]
, where D2 ∈ <p×q.

• CT−1 = [0 Ip], where Ip ∈ <p×p is an identity matrix.

Therefore, in the new coordinate system, the system (1) is
described by

ż1 = A11z1 +A12z2 + ρ1(z, u)+ η1(z, u, t)

ż2 = A21z1 +A22z2 + ρ2(z, u)+ η2(z, u, t)
+β(t − T0)D2φ(y, u)

y = z2,

(2)

where
[
ρ1(z, u)
ρ2(z, u)

]
= Tζ (T−1z, u) and

[
η1(z, u, t)
η2(z, u, t)

]
= Tϕ(T−1z, u, t).

With amore general structure of the nonlinear fault model, system
(2) can be extended to

ż1 = A11z1 +A12z2 + ρ1(z, u)+ η1(z, u, t)

ż2 = A21z1 +A22z2 + ρ2(z, u)+ η2(z, u, t)
+β(t − T0)f (y, u)

y = C̄z2,

(3)

where f : <p × <m 7→ <p is a smooth vector field representing
the nonlinear fault function under consideration, and C̄ ∈ <p×p
is a nonsingular matrix. Clearly, (2) is a special case of (3) with
f (y, u) = D2φ(y, u) and C̄ = Ip.
It is assumed that there are N types of possible faults in the

fault set F ; specifically, the unknown fault function f (y, u) in (3)
belongs to a finite set of fault types given by

F
4
=
{
f 1(y, u), . . . , f N(y, u)

}
. (4)

Each fault type f s, s = 1, . . . ,N , is in the form of

f s(y, u)
4
=
[
(θ s1(t))

>g s1(y, u), . . . , (θ
s
p(t))

>g sp(y, u)
]>
, (5)

where each θ si (t), i = 1, . . . , p, is an unknown parameter vector
assumed to belong to a known corresponding compact and convex
set Θ si (i.e., θ

s
i (t) ∈ Θ si ⊂ <

lsi ,∀t ≥ 0) and g si : <
p
× <

m
7→

<
lsi , is a known smooth vector field. As discussed in Zhang et al.
(2001), Zhang et al. (2002), the fault model described by (4) and
(5) characterizes a general class of nonlinear faults where the
vector field g si represents the functional structure of the sth fault
affecting the ith state in z2, while the unknown parameter vector
θ si (t) characterizes the time-varying ‘‘magnitude’’ of the fault.
Throughout the paper, the following assumptions are used:

Assumption 2. The functionsη1 andη2 in (3), representing the un-
structured modeling uncertainty, are possibly unknown nonlinear
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functions of z, u, and t , but bounded, i.e., ∀(z, y, u) ∈ Z × Y ×
U,∀t ≥ 0,

|η1(z, u, t)| ≤ η̄1, |η2(z, u, t)| ≤ η̄2(y, u, t), (6)

where the constant bound η̄1 and the bounding function η̄2(y, u, t)
are known, and η̄2 is uniformly bounded inY×U×<+. Addition-
ally,Z ⊂ <n,U ⊂ <m, andY ⊂ <p are compact sets of admissible
state variables, inputs, and outputs, respectively.

Assumption 3. The system state vector z remains bounded before
and after the occurrence of a fault, i.e., z(t) ∈ L∞, ∀t ≥ 0.

Assumption 4. The rate of change of each fault parameter vector
θ si (t) in (5) (s = 1, . . . ,N) is uniformly bounded, i.e., |θ̇

s(t)| ≤ αs

for all t ≥ 0, where θ s(t)
4
=

[(
θ s1(t)

)>
, . . . ,

(
θ sp(t)

)>]>, and αs is
a known constant.

Assumption 5. The known nonlinear terms ρ1(z, u) and ρ2(z, u)
in (3) are uniformly Lipschitz in u ∈ U, i.e., ∀z, ẑ ∈ Z,

|ρ1(z, u)− ρ1(ẑ, u)| ≤ γ1|z − ẑ| (7)

|ρ2(z, u)− ρ2(ẑ, u)| ≤ γ2|z − ẑ|, (8)

where γ1 and γ2 are the known Lipschitz constants for ρ1(z, u) and
ρ2(z, u), respectively.

Assumption 2 characterizes the class ofmodeling uncertainties un-
der consideration. The bounds on the unstructured modeling un-
certainties are needed in order to be able to distinguish between
the effects of faults and modeling uncertainty (see Emami-Naeini,
Akhter, and Rock (1998), Zhang et al. (2001), Zhang et al. (2002)). In
this paper, η̄1 is assumed to be a constant to facilitate the deriva-
tion of adaptive thresholds for fault detection and isolation. It is
worth noting that the unstructured modeling uncertainty consid-
ered in this paper is more general than the structured uncertainty
considered for Lipschitz nonlinear systems in the fault diagnosis
literature (e.g., Chen and Saif (2007), Vijayaraghavan et al. (2007),
Yan and Edwards (2007)), which, to achieve robustness, addition-
ally assumes that certain rank conditions are satisfied by the distri-
bution matrix of the structuredmodeling uncertainty. On the other
hand, the utilization of structured uncertainty with additional as-
sumptions on the distribution matrix may allow the design of FDI
schemes that completely decouple the fault frommodeling uncer-
tainty.
Assumption 3 requires the boundedness of the state variables

before and after the occurrence of a fault. Hence, it is assumed that
the feedback control system is capable of retaining the bounded-
ness of the state variables even in the presence of a fault. This is a
technical assumption required forwell-posedness since the FDI de-
sign that we consider does not influence the closed-loop dynamics
and stability. It is important to note that the proposed FDI design
does not depend on the structure of the controller.
In Assumption 4, known bounds on the rates of change of θ s(t)

are assumed. In practice, the rate boundsαs can be set by exploiting
some a priori knowledge on the fault developing dynamics. In the
case of a constant fault magnitude, we simply set αs = 0. Note
that the fault time profile is represented by the function β(t − T0)
in (3), while θ s(t) only represents the (possibly time-varying) fault
magnitude.

Remark 1. The known nominal system model in (3) is similar to
the model used in Yan and Edwards (2007). The objective of this
paper is to develop a robust FDI scheme using adaptive approxima-
tion techniques, while Yan and Edwards (2007) presented a fault
estimation method using a sliding mode observer, which requires
additional assumptions on the distribution matrices of the mod-
eling uncertainty terms η1 and η2 as well as the fault function f
in (3).Moreover, in our previouswork (Vemuri & Polycarpou, 1997;
Zhang et al., 2005, 2001), the nonlinear term ζ in (1) is modeled as

ζ (y, u) instead of ζ (x, u). With the nonlinearity being a function
of partially measurable state vector x and in the presence of pos-
sibly unstructured modeling uncertainty, the design and analysis
of adaptive fault diagnostic estimators clearly become more chal-
lenging.

3. Fault detection and isolation architecture

The fault detection and isolation architecture is based on a bank
of N + 1 nonlinear adaptive estimators, where N is the number of
different nonlinear fault types in the fault set F (see (4)). One of
the nonlinear adaptive estimators is the FDE used for detecting the
occurrence of any faults, while the remainingN nonlinear adaptive
estimators are FIEs, which are activated after fault detection for
the purpose of determining the particular type of fault that has
occurred (see Zhang et al. (2002) for the general scheme).

3.1. Fault detection scheme

Based on the system model given by (3), the FDE is chosen as
follows:
˙̂z1 = A11ẑ1 +A12C̄−1y+ ρ1(ẑ, u),
˙̂z2 = A21ẑ1 +A22ẑ2 + ρ2(ẑ, u)+ L(y− ŷ),
ŷ = C̄ ẑ2,

(9)

where ẑ1, ẑ2, and ŷ denote the estimated state and output variables,
respectively, L ∈ <

p×p is a design gain matrix, and ẑ
4
=

[ (ẑ1)> (C̄−1y)> ]>. The initial conditions are ẑ1(0) = 0 and

ẑ2(0) = 0. Let z̃1
4
= z1 − ẑ1 and z̃2

4
= z2 − ẑ2 denote the state

estimation errors, and ỹ
4
= y − ŷ denote the output estimation

error. Then, before fault occurrence (i.e., for t < T0), we have

˙̃z1 = A11z̃1 + ρ1(z, u)− ρ1(ẑ, u)+ η1 (10)
˙̃z2 = Ā22z̃2 +A21z̃1 + ρ2(z, u)− ρ2(ẑ, u)+ η2 (11)

ỹ = C̄(z2 − ẑ2) = C̄ z̃2, (12)

where Ā22
4
= A22 − LC̄ . Note that, since C̄ is nonsingular, we can

always choose L to make Ā22 stable.
In the analysis of the state estimation error z̃1(t), we will need

the following technical results:

Lemma 1 (Bellman–Gronwall Lemma (Ioannou & Sun, 1996)). Let t0
be a given time instant and c0, c1, c2, λ be nonnegative constants,
and κ(t) a nonnegative piecewise continuous function of time. If h(t)
satisfies the inequality

h(t) ≤ c0e−λ(t−t0) + c1 + c2

∫ t

t0
e−λ(t−τ)κ(τ)h(τ )dτ , ∀t ≥ t0,

then

h(t) ≤ (c0 + c1)e−λ(t−t0)e
c2
∫ t
t0
κ(s)ds

+ c1λ
∫ t

t0
e−λ(t−τ)ec2

∫ t
τ κ(s)dsdτ , ∀t ≥ t0.

Lemma 2. Consider the system described by (3) and the fault detec-
tion estimator described by (9). Let k0 and λ0 be positive constants
chosen such that ‖eA11t‖ ≤ k0e−λ0t . Assume that λ0 > k0γ1, where
γ1 is the Lipschitz constant given in (7). Then, for 0 ≤ t < T0, the
state estimation error z̃1(t) satisfies:

|z̃1(t)| ≤
k0η̄1

λ0 − k0γ1
+

(
k0ω1 −

k0η̄1
λ0 − k0γ1

)
e−(λ0−k0γ1)t , (13)

where ω1 is a constant bound for |z1(0)|, which will be defined later
on.
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Proof. From (10), we have

z̃1(t) =
∫ t

0
eA11(t−τ)

[
ρ1(z, u)− ρ1(ẑ, u)+ η1(z, u, τ )

]
dτ

+ eA11t z̃1(0).

By using (6) and (7) and by applying the triangle inequality, we
obtain

|z̃1(t)| ≤
k0η̄1
λ0
+ γ1

∫ t

0
k0e−λ0(t−τ)|z(τ )− ẑ(τ )| dτ

+ k0

(
ω1 −

η̄1

λ0

)
e−λ0t , (14)

where k0 and λ0 are positive constants chosen such that ‖eA11t‖ ≤
k0e−λ0t (sinceA11 is stable, such constants k0 and λ0 always exist
(Ioannou & Sun, 1996)), and ω1 is a (possibly conservative) con-
stant bound for |z1(0)|, such that |z̃1(0)| = |z1(0)| ≤ ω1 (note that
ẑ1(0) = 0). Based on Assumption 3, such a constant bound ω1 can
always be chosen.
By substituting

|z(τ )− ẑ(τ )| = |z̃1(τ )|, (15)

into (14), we obtain

|z̃1(t)| ≤
k0η̄1
λ0
+ k0γ1

∫ t

0
e−λ0(t−τ)|z̃1(τ )| dτ

+ k0

(
ω1 −

η̄1

λ0

)
e−λ0t . (16)

Now, by applying Lemma 1 to (16) with c0 = k0
(
ω1 −

η̄1
λ0

)
(we

can always choose ω1 to ensure that c0 ≥ 0), c1 =
k0η̄1
λ0
, c2 = k0γ1,

and κ(t) = 1, the proof of (13) can be immediately concluded. �

Next, we analyze each component of the output estimation
error, i.e., ỹj(t)

4
= C̄jz̃2(t), j = 1, . . . , p, where C̄j is the jth row

vector of matrix C̄ .
By applying the triangle inequality and using (8), (11), (15) and

(6), it can be shown that

|ỹj(t)| ≤ kj

∫ t

0
e−λj(t−τ)

[
(‖A21‖ + γ2) |z̃1(τ )| + η̄2

]
dτ

+ kjω2e−λjt , (17)

where kj and λj are positive constants chosen such that |C̄jeĀ22t | ≤
kje−λjt (since Ā22 is stable, constants kj and λj satisfying the above
inequality always exist (Ioannou & Sun, 1996)), and ω2 is a (possi-
bly conservative) bound for |z2(0)|, such that |z̃2(0)| = |z2(0)| ≤
ω2 (note that ẑ2(0) = 0). By Assumption 3,we can always find such
a constant bound ω2. Based on (13) and (17), we obtain

|ỹj(t)| < kj

∫ t

0
e−λj(t−τ)

[
(‖A21‖ + γ2) χ(τ)+ η̄2

]
dτ

+ kjω2e−λjt , (18)

where

χ(t)
4
=

k0η̄1
λ0 − k0γ1

+

(
k0 ω1 −

k0η̄1
λ0 − k0γ1

)
e−(λ0−k0γ1)t . (19)

According to (18), the decision scheme for fault detection is as fol-
lows:

Fault Detection Decision Scheme. The decision on the occurrence
of a fault (detection) is made when the modulus of at least one

component of the output estimation error (i.e., ỹj(t)) exceeds its
corresponding threshold νj(t) given by

νj(t)
4
= kj

∫ t

0
e−λj(t−τ) [(‖A21‖ + γ2) χ(τ)+ η̄2] dτ

+ kjω2e−λjt . (20)

The fault detection time Td is defined as the first time instant such that∣∣ỹj(Td)∣∣ > νj(Td), for some Td ≥ T0 and some j ∈ {1, . . . , p}, that is,

Td
4
= inf

p⋃
j=1

{
t ≥ 0:

∣∣ỹj(t)∣∣ > νj(t)
}
.

The above design and analysis is summarized by the following
result:

Theorem 1 (Robustness). For the nonlinear system (3), the fault de-
tection decision scheme, characterized by the fault detection estimator
(9) and adaptive thresholds (20), guarantees that there will be no false
alarms before fault occurrence (i.e., for t ≤ T0).

Remark 2. The adaptive thresholds νj(t) given by (20) can be eas-
ily implemented using linear filtering techniques (Zhang et al.,
2001, 2002). Additionally, ω1 and ω2 in (19) and (20) are (possi-
bly conservative) bounds for the unknown initial conditions z1(0)
and z2(0). However, since the effect of these bounds decreases ex-
ponentially (i.e., they are multiplied by e−(λ0−k0γ1)t and e−λjt , re-
spectively), the use of such bounds will not affect significantly the
performance of the fault detection algorithm.
As is well known in the fault diagnosis literature (Blanke et al.,
2006; Chen & Patton, 1999; Frank, 1990; Gertler, 1998; Isermann,
2006), there is an inherent tradeoff between robustness and fault
sensitivity. The following theorem characterizes implicitly the
class of faults that are detectable by the proposed FDI scheme:

Theorem 2 (Fault Detectability). For the nonlinear system (3) with
the fault detection decision scheme defined by the fault detection
estimator (9) and the adaptive thresholds (20), if there exist some time
instant Td > T0 and some j ∈ {1, . . . , p}, such that the fault function
f (y, u) satisfies∣∣∣∣∫ Td

T0
C̄jeĀ22(Td−τ)f (y(τ ), u(τ ))dτ

∣∣∣∣
> 2kj

∫ Td

T0
e−λj(Td−τ)

[(
‖A21‖ + γ2

)
χ(τ)+ η̄2(y, u, τ )

]
dτ

+
[
kj|z̃2(T0)| + νj(T0)

]
e−λj(Td−T0), (21)

then the fault will be detected at time t = Td, i.e., |ỹj(Td)| > νj(Td).
Proof. In the presence of a fault (i.e., for t ≥ T0), based on (3) and
(9), the dynamics of the state estimation errors z̃1

4
= z1 − ẑ1 and

z̃2
4
= z2 − ẑ2 satisfies

˙̃z1 = A11z̃1 + ρ1(z, u)− ρ1(ẑ, u)+ η1(z, u, t) (22)
˙̃z2 = Ā22z̃2 +A21z̃1 + ρ2(z, u)− ρ2(ẑ, u)

+ η2(z, u, t)+ f (y, u). (23)

Therefore, each component of the output estimation error, ỹj(t) =
yj(t)− ŷj(t), j = 1, . . . , p, is given by

ỹj(t) =
∫ t

T0
C̄jeĀ22(t−τ)

[
ρ2(z(τ ), u(τ ))− ρ2(ẑ(τ ), u(τ ))

]
dτ

+

∫ t

T0
C̄jeĀ22(t−τ)[A21z̃1(τ )+ η2(z(τ ), u(τ ), τ )]dτ

+

∫ t

T0
C̄jeĀ22(t−τ)f (y, u)dτ + C̄jeĀ22(t−T0)z̃2(T0).
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From (22), we have |z̃1(t)| ≤ χ(t) (by using similar arguments as
in the derivation of the fault detection threshold (20)); therefore,
by applying the triangular inequality and based on (6), (8) and (15),
it follows that

|ỹj(t)| ≥
∣∣∣∣∫ t

T0
C̄jeĀ22(t−τ)f (y, u)dτ

∣∣∣∣− kj|z̃2(T0)|e−λj(t−T0)
− kj

∫ t

T0
e−λj(t−τ)η̄2(y, u, τ )dτ

− kj

∫ t

T0
e−λj(t−τ)

[
‖A21‖ + γ2

]
χ(τ)dτ . (24)

Since
∫ t
0 =

∫ T0
0 +

∫ t
T0
, the detection threshold νj(t) given by (20)

for t > T0 can be rewritten as

νj(t) = kj

∫ t

T0
e−λj(t−τ)

[
(‖A21‖ + γ2) χ(τ)+ η̄2(y, u, τ )

]
dτ

+ e−λj(t−T0)νj(T0). (25)

Based on (24) and (25), if there exists Td > T0, such that condition
(21) is satisfied, thenwe can conclude that |ỹi(Td)| > νj(Td), i.e., the
fault is detected at time t = Td. �

Remark 3. Noting that the integral on the left-hand side of (21)
represents the filtered fault function, in qualitative terms, the fault
detectability theorem states that, if the magnitude of the filtered
fault function on the time interval [T0, Td] becomes sufficiently
large, then the fault can be detected.

3.2. Fault isolation estimators and decision scheme

Now, assume that a fault is detected at some time Td; accord-
ingly, by following the general approach presented in Zhang et al.
(2002), at time t = Td the FIEs are activated. Each FIE corresponds
to one potential fault type. Specifically, the following N nonlin-
ear adaptive estimators are used as isolation estimators: for each
s = 1, . . . ,N , we have

˙̂zs1 = A11ẑs1 +A12C̄−1y+ ρ1(ẑs, u), ẑs1(Td) = 0
˙̂zs2 = A21ẑs1 +A22ẑs2 + ρ2(ẑ

s, u)+ Ls(y− ŷs)

+ f̂ s(y, u, θ̂ s)+Ω s ˙̂θ s, ẑs2(Td) = 0

Ω̇ s = Ā22Ω
s
+ Gs(y, u), Ω s(Td) = 0

ŷs = C̄ ẑs2,

(26)

where ẑs1, ẑ
s
2, and ŷ

s denote the estimated state and output vari-
ables, respectively, Ls ∈ <p×p is a design gain matrix (for
the simplicity of presentation and without loss of generality,
we let Ls = L), ẑs

4
= [ (ẑs1)

> (C̄−1y)> ]>, f̂ s(y, u, θ̂ s) =
[(θ̂ s1)

>g s1(y, u), . . . , (θ̂
s
p)
>g sp(y, u)], and θ̂

s
i ∈ <

lsi , for i = 1, . . . , p,
is the estimate of the fault parameter vector provided by the sth
isolation estimator. It is noted that, according to (5), the fault
approximation model f̂ s is linear in the adjustable weights θ̂ s.
Consequently, the gradient matrix Gs

4
= ∂ f̂ s(y, u, θ̂ s)/∂θ̂ s =

diag [(g s1)
>, . . . , (g sp)

>
] does not depend on θ̂ s.

The adaptation in the isolation estimators arises due to the

unknown parameter vector θ s
4
=

[(
θ s1
)>
, . . . ,

(
θ sn
)>]>. The

adaptive law for adjusting θ̂ s is derived using the Lyapunov
synthesis approach (see for example Ioannou and Sun (1996)).
Specifically, the learning algorithm is chosen as follows

˙̂
θ s = PΘs

{
ΓΩ s

>C̄>ỹs
}
, (27)

where ỹs(t)
4
= y(t)− ŷs(t) denotes the output estimation error of

the sth estimator, Γ > 0 is a symmetric, positive-definite learning
rate matrix, andPΘs is the projection operator restricting θ̂ s to the
corresponding known setΘ s (in order to guarantee stability of the
learning algorithm in the presence ofmodeling uncertainty (Farrell
& Polycarpou, 2006; Ioannou & Sun, 1996)). The stability and
learning properties of the FIEs are characterized by the following
result:

Theorem 3. In the presence of faults, the nonlinear adaptive fault
isolation scheme described by (26) and (27) guarantees that, for each
fault isolation estimation s, s ∈ {1, . . . ,N},

• the estimate variables ẑs1(t), ẑ
s
2(t), and θ̂

s(t) are uniformly
bounded;
• there exist a positive constant κ̄ and a bounded function ξ̄ s(t) such
that, for all finite t > Td, the output estimation error satisfies∫ t

Td
|ỹs(t)|2dt ≤ κ̄ + 2

∫ t

Td
|ξ̄ s(t)|2dt. (28)

Proof. See Appendix A. �

Remark 4. Theorem 3 ensures the boundedness of all signals in
the FIEs. Moreover, the performance measure given by (28) shows
that the ability of the FIEs to learn the fault function is limited
by the extended L2 norm of ξ̄ s(t) (defined in Appendix A), which
corresponds to the modeling uncertainties η1 and η2, the fault
function approximation error, and unknown initial conditions.

The fault isolation decision scheme is based on the following in-
tuitive principle (see Zhang et al. (2002)): if fault s occurs at time
T0 and is detected at time Td, then a set of adaptive threshold
functions {µsj (t), j = 1, . . . , p} can be designed for the sth FIE,
such that the jth component of its output estimation error satisfies
|ỹsj (t)| ≤ µ

s
j (t), for all t > Td. Consequently, for each s = 1, . . . ,N ,

such a set of adaptive thresholds {µsj (t), j = 1, . . . , p} can be asso-
ciated with the output estimation error of the sth FIE. In the fault
isolation procedure, if, for a particular isolation estimator s, there
exists some j ∈ {1, . . . , p}, such that the jth component of its out-
put estimation error satisfies |ỹsj (t)| > µsj (t) for some finite time
t > Td, then the possibility of the occurrence of fault s can be ex-
cluded. Based on this intuitive idea, the following fault isolation
decision scheme is devised:

Fault Isolation Decision Scheme. If, for each r ∈ {1, . . . ,N} \ {s},
there exist some finite time t r > Td and some j ∈ {1, . . . , p}, such
that |ỹrj (t

r)| > µrj (t
r), then the occurrence of fault s is concluded.

4. Adaptive thresholds for fault isolation

The threshold functions µsj (t) clearly play a key role in the
fault isolation decision scheme. The following lemma provides a
bounding function for the output estimation error of the sth FIE in
the case that fault s occurs.

Lemma 3. If fault s occurs, where s ∈ {1, . . . ,N}, then for all t > Td,
the jth component of the output estimation error of the sth isolation
estimator satisfies the following inequality:

|ỹsj (t)| ≤ kj

∫ t

Td
e−λj(t−τ)

[
(‖A21‖ + γ2)χ

s(τ )
]
dτ

+ kj

∫ t

Td
e−λj(t−τ)

[
η̄2(y, u, τ )+ αs‖Ω s‖

]
dτ

+ |(C̄jΩ s)>| |θ̃ s| + kjω2e−λj(t−Td), (29)
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where

χ s(t)
4
=

(
k0ω1 −

k0η̄1
λ0 − k0γ1

)
e−(λ0−k0γ1)(t−Td) +

k0η̄1
λ0 − k0γ1

, (30)

and θ̃ s(t)
4
= θ̂ s(t) − θ s(t) represents the fault parameter vector

estimation error.
Proof. Denote the state estimation error of the sth isolation esti-
mator by z̃s1(t)

4
= z1(t)− ẑs1(t) and z̃

s
2(t)

4
= z2(t)− ẑs2(t). By using

(26) and (3), in the presence of fault s, the state estimation error of
the sth estimator, for t > Td, satisfies

˙̃z
s
1 = A11z̃s1 + ρ1(z, u)− ρ1(ẑ

s, u)+ η1(z, u, t) (31)

˙̃z
s
2 = Ā22z̃s2 +A21z̃s1 + ρ2(z, u)− ρ2(ẑ

s, u)+ η2(z, u, t)

+ f (y, u)− f̂ s(y, u, θ̂ s)−Ω s ˙̂θ s. (32)

By substituting f (y, u) = Gsθ s and f̂ s = Gsθ̂ s into (32) and by using
Gs = Ω̇ s − Ā22Ω

s (see (26)), we have

˙̃z
s
2 = Ā22

(
z̃s2 +Ω

sθ̃ s
)
+A21z̃s1 + ρ2(z, u)− ρ2(ẑ

s, u)

+ η2(z, u, t)−
d
dt
(Ω sθ̃ s)−Ω sθ̇ s(t).

By letting z̄s2
4
= z̃s2 +Ω

sθ̃ s, the above equation can be rewritten as

˙̄z
s
2 = Ā22z̄s2 +A21z̃s1 + ρ2(z, u)− ρ2(ẑ

s, u)

+η2(z, u, t)−Ω sθ̇ s(t). (33)

By defining each component of the output estimation error ỹsj (t)
4
=

yj(t)− ŷsj (t), j = 1, . . . p, and using (26) and (3), we have

ỹsj (t) = C̄jz̃
s
2(t) = C̄j

(
z̄s2(t)−Ω

sθ̃ s
)
. (34)

Now, based on (34) and on the solution of (33), as well as As-
sumptions 2, 4 and 5, after some algebraic manipulations, it can
be shown that

|ỹsj (t)| ≤ kj

∫ t

Td
e−λj(t−τ)

[
‖A21‖|z̃s1(τ )| + η̄2(y, u, τ )

]
dτ

+ kj

∫ t

Td
e−λj(t−τ)

[
γ2|z(τ )− ẑs(τ )| + αs‖Ω s‖

]
dτ

+ kje−λj(t−Td)|z̄s2(Td)| + |(C̄jΩ
s)>||θ̃ s|.

Note that (31) is similar to (10). Thus, based on (13) and (30), in-
equality (29) followsdirectly from the initial conditions ẑs2(Td) = 0,
Ω s(Td) = 0, and |zs2(Td)| ≤ ω2. �

Although Lemma 3 provides an upper bound on the output
estimation error of the sth estimator, the right-hand side of (29)
cannot be directly used as a threshold function for fault isolation
because θ̃ s(t) is not available (note that parameter convergence is
not guaranteed since we do not make the restrictive assumption
of persistency of excitation of signals (Farrell & Polycarpou, 2006;
Ioannou & Sun, 1996)). However, since the estimate θ̂ s belongs
to the known compact set Θ s, we have

∣∣∣θ s − θ̂ s(t)∣∣∣ ≤ κ s(t)
for a suitable κ s(t) depending on the geometric properties of set
Θ s (see Zhang et al., 2001, 2002). Hence, based on the above
discussions, the following threshold function is chosen:

µsj (t) = kj

∫ t

Td
e−λj(t−τ)

[
(‖A21‖ + γ2)χ

s(τ )+ η̄2(y, u, τ )

+αs‖Ω s‖
]
dτ + |(C̄jΩ s)>|κ s(t)+ kjω2e−λj(t−Td), (35)

which again can be easily implemented on-line using linear
filtering techniques (Zhang et al., 2001, 2002).

5. Fault isolability analysis

For our purpose, a fault is said to be isolable if the fault isola-
tion scheme is able to reach a correct decision in finite time. Intu-
itively (and following the general approach outlined in Zhang et al.
(2002)), faults are isolable if they are mutually different according
to a certain measure quantifying the difference in the effects that
different faults have on measurable outputs and on the estimated
quantities in the isolation scheme. To quantify this concept, we in-
troduce the fault mismatch function between the sth fault and the
rth fault:

hsrj (t)
4
= C̄j

(
Ω sθ s −Ω r θ̂ r

)
, (36)

where r, s = 1, . . . ,N, r 6= s. From a qualitative point of view,
hsrj (t) can be interpreted as a filtered version of the difference be-
tween the actual fault function Gsθ s and its estimate Gr θ̂ r associ-
atedwith isolation estimator r whose structure does notmatch the
actual fault s. Recalling that each FIE corresponds to one of the non-
linear faults in the fault class. Consequently, if fault s occurs, its es-
timate Gr θ̂ r associated with FIE r is determined by the structure of
FIE r , which in turn is determined by fault r . Therefore, the fault
mismatch function hsr(t), defined as the ability of FIE r to match
fault s, provides a measure of the difference between fault s and
fault r .
The following theorem characterizes the class of isolable faults:

Theorem 4. Consider the fault isolation scheme described by (26)
and (35). Suppose that a fault s, s = 1, . . . ,N, occurring at time
t = T0 is detected at time t = Td. Then fault s is isolable if, for
each r ∈ {1, . . . ,N} \ {s}, there exist some time t r > Td and some
j ∈ {1, . . . , p}, such that the fault mismatch function hsrj (t

r) satisfies
the following inequality:

|hsrj (t)| ≥ 2kj

∫ t

Td
e−λj(t−τ)

[
(‖A21‖ + γ2)χ

r(τ )+ η̄2
]
dτ

+ kj

∫ t

Td
e−λj(t−τ)

[
αs‖Ω s‖ + αr‖Ω r‖

]
dτ

+ |(C̄jΩ r)>|κ r(t)+ 2ω2kje−λj(t−Td). (37)

Proof. See Appendix B. �

Remark 5. According to the above theorem, if, for each r ∈
{1, . . . ,N} \ {s}, the fault mismatch function hsrj (t

r) satisfies con-
dition (37) for some time t r > 0, then the jth component of the
output estimation error associated with the rth isolation estima-
tion would exceed its corresponding adaptive threshold at time
t = t r , i.e., |ỹrj (t

r)| > µrj (t
r), hence excluding the occurrence of

fault r . Therefore, Theorem 4 characterizes (in a non-closed form)
the class of nonlinear faults that are isolable by the proposed robust
FDI scheme.

6. Simulation results

Consider a single-link robotic arm with a revolute elastic joint
rotating in a vertical plane whose motion equations are given
by Raghavan and Hedrick (1994), Spong and Vidyasagar (1989)

Jlq̈1 + k(q1 − q2)+mgh sin q1 = 0
Jmq̈2 + Fmq̇2 − k(q1 − q2) = kτu,

where q1 and q2 are the angular positions of the link and themotor,
respectively. The link inertia J1 = 9.3× 10−3 kg m2, motor inertia
Jm = 3.7 × 10−3 kg m2, torsional spring constant k = 1.8 ×
10−1 Nm/rad, linkmassm = 2.1×10−1 kg, link length h = 0.15m,
amplifier gain kτ = 8 × 10−2 Nm/V, viscous friction coefficients
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Fm = 4.6 × 10−2 Nm/V, and the gravity constant g = 9.8. The
control u is the torque by the motor.
By choosing x1 = q1, x2 = q̇1, x3 = q2, x4 = q̇2, and assuming

that the motor position, motor velocity, and the sum of link
position and link velocity are measured (see, e.g. Yan and Edwards
(2007)), a state space model of the system can be obtained.
Additionally, by using a linear transformation of coordinates z =
[ z>1 z>2 ]

>
= Tx with T = [−50 0 0 0; −0.1 −

0.1 0 0; 0 0 1 0; 0 0 0 1], the state space model in the new
coordinate system is
ż1

ż2

 =
 −1 500 0 0
−0.04 1 −1.94 0
0 0 0 1.00
−0.97 0 −48.65 −12.43



z1

z2



+


0

−3.32 sin(z1/50)
0

21.62u

 + η + βf (y, u)

y =

[
−10 0 0
0 1 0
0 0 1

]
z2.

Note that the effects of modeling uncertainty η and faults f
have been included in the above model. Specifically, in this
simulation example, the modeling uncertainty ϕ is assumed to be
up to 10% inaccuracy in the amplifier gain kτ , which gives η =
[ 0 0 0 η2 ]

> with η̄2 = 0.1kτ
Jm
|u(t)|. The following two types

of faults are considered:

• Actuator fault. We consider a simple multiplicative actuator
fault by letting u = ū + θ1ū, where ū is the nominal control
input in the non-fault case and θ1 ∈ [ −1 0 ] is the param-
eter characterizing the magnitude of the fault. Note that the
case θ1 = 0 represents the normal operation condition (no
fault), while θ1 = −1 corresponds to the complete failure of
the actuator. Therefore, the actuator fault can be described by
f 1(y, u)

4
= [ 0 0 0 θ1g1(u) ]>, where g1(u) = kτu/Jm

and θ1 ∈ [−1, 0].
• A fault leading to extra abnormal friction in themotor. Specifically,
as a result of the fault, the viscous friction constant Fm increases
from 0.046 Nm/V up to 0.146 Nm/V. Then, the fault function

is in the form of f 2(y, u)
4
= [ 0 0 0 θ2g2(y) ]>, where

g2(y) = 0.1y3/Jm, and θ2 ∈ [−1, 0] represents the significance
of extra friction.

The above model is clearly in the form of (3). The nonlinear term
−3.32 sin(z1/50) has a global Lipschitz constant of 0.0664.
Based on the fault detection and isolation scheme described in

Sections 3 and 4, a fault detection estimator and two fault isolation
estimators are constructed. The initial conditions of the plant are
chosen to be x(0) = 0, and the input to the system is given by
u(t) = 2 sin(2t). We set the observer gainmatrix L = [−0.2500 −
1.9355 0; 0 1.7000 1.0000; 0 − 48.6486 − 10.5324], so
that the poles of matrix Ā22 are located at −1.5, −1.7, and −1.9,
respectively. Consequently, the related constants are chosen to be
k0 = k1 = k2 = k3 = 1, λ0 = 1, λ1 = 1.2, λ2 = 1.4, and
λ3 = 1.9. The learning rate of the adaptive algorithm for fault
parameter estimation in the FIEs is set to 1.
Figs. 1 and 2 show the simulation results when an actuator

fault, with θ1 = −0.4, occurs at T0 = 5 s. Specifically, the fault
detection residual (solid and red line) and its threshold (dashed
and blue line) associated with y3 are shown in Fig. 1. As can be
seen, the fault is detected almost immediately at approximately
Td = 5.1 s. Then, the two FIEs are activated to determine the

Fig. 1. The case of fault 1: Fault detection residual (solid line) and its threshold
(dashed line) associated with y3 .

FIE #2 (y3)

FIE #1 (y2) FIE #1 (y3)

FIE #1 (y1)

time (sec) time (sec)

Fig. 2. The case of fault 1: Fault isolation residuals (solid line) and their thresholds
(dashed line) generated by FIE 2 (only the pair associated with y3 are shown) and
FIE 1, respectively.

particular fault type that has occurred. Selected fault isolation
residuals and their corresponding thresholds generated by FIE #1
and FIE #2, respectively, are shown in Fig. 2. Note that, for FIE #2,
only the residual and threshold associatedwith y3 are shown, since
this is sufficient to exclude the possibility of occurrence of f 2 for
fault isolation. It can be seen that the residual associated with y3
generated by FIE #2 exceeds its threshold (shown in the top left
plot in Fig. 2), while all three residual components generated by
the FIE #1 always remain below their thresholds (shown in the
remaining plots of Fig. 2), thus indicating the occurrence of an
actuator fault (i.e, fault 1). The fault is isolated at approximately
6.2 s. Analogously, Figs. 3 and 4 show the simulation results when
a fault of type 2with θ2 = −0.5, occurs at T0 = 5 s. Again, the fault
is successfully detected and isolated.

7. Concluding remarks

In this paper, a robust fault diagnosis scheme for a class of
Lipschitz uncertain nonlinear system is presented. The robus-
tness, fault detectability and isolability are enhanced via the
appropriately designed adaptive thresholds in the diagnostic deci-
sion-making stage. Fault detectability and isolability conditions
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FDE

time (sec)

Fig. 3. The case of fault 2: Fault detection residual (solid line) and its threshold
(dashed line) associated with y3 .

FIE #1 (y3)

FIE #2 (y2) FIE #2 (y3)

FIE #2 (y1)

time (sec) time (sec)

Fig. 4. The case of fault 2: Fault isolation residuals (solid line) and their thresholds
(dashed line) generated by FIE 1 (only the pair associated with y3 are shown) and
FIE 2, respectively.

characterizing the class of detectable and isolable faults are rig-
orously investigated. A simulation example of a single-link flexi-
ble joint robot is used to show the effectiveness of the proposed
method.
Future research work will extend the proposed method to con-

sider more general nonlinear system models with sensor faults
and noise (see Zhang et al. (2005)). Another interesting research
topic is the integration of fault diagnosis with fault-tolerant con-
trol techniques to compensate for the effect of faults using on-line
diagnostic information (see, for instance, Mhaskar et al. (2006),
Zhang, Parisini, and Polycarpou (2004)). Additionally, the exten-
sion to fault diagnosis of decentralized large-scale systems de-
serves significant attention (see Ferrari, Parisini, and Polycarpou
(2009); Zhang, Polycarpou, and Parisini (2009)).
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Appendix A. Proof of Theorem 3

Proof. After fault detection (i.e., for t > Td), based on (3) and (26),
for any s ∈ {1, . . . ,N}, the state estimation error of the sth FIE
(i.e., z̃s1

4
= z1 − ẑs1 and z̃

s
2
4
= z2 − ẑs2) satisfies

˙̃z
s
1 = A11z̃s1 + ρ1(z, u)− ρ1(ẑ

s, u)+ η1(z, u, t) (38)

˙̃z
s
2 = Ā22z̃s2 +A21z̃s1 + ρ2(z, u)− ρ2(ẑ

s, u)+ η2(z, u, t)

+ f̂ s(y, u, θ̄ s)+ εs(t)− f̂ s(y, u, θ̂ s)−Ω s ˙̂θ s, (39)

where εs(t) denotes the fault function approximation error (Farrell
& Polycarpou, 2006) and the parameter θ̄ s is the value of θ̂ s that
minimizes the L∞-norm between f (y, u) and f̂ s(y, u, θ̂ s) over all
(y, u) in the learning domain (Y × U) ∈ (<p × <m), subject
to the restriction that θ̄ s belongs to a compact and convex region
Θ s ⊂ <l

s
.

By using Gs = Ω̇ s − Ā22Ω
s and by defining z̄s2

4
= z̃s2 + Ω

sθ̃ s,
(39) can be rewritten as

˙̄z
s
2 = Ā22z̄s2 +A21z̃s1 + ρ2(z, u)− ρ2(ẑ

s, u)+ η2 + εs(t)

where θ̃ s(t)
4
= θ̂ s(t) − θ̄ s. The solution of the above differential

equation can be written as

z̄s2(t) = ξ
s
1(t)+ ξ

s
2(t), ∀t ≥ Td, (40)

where ξ s1(t) and ξ
s
2(t) are the solutions of

ξ̇ s1 = Ā22ξ
s
1 +A21z̃s1 + ρ2(z, u)− ρ2(ẑ

s, u)+ η2 + εs(t) (41)

ξ̇ s2 = Ā22ξ
s
2,

with initial conditions ξ s1(Td) = 0 and ξ
s
2(Td) = z̄

s
2(Td) = z

s
2(Td).

Therefore, we have

z̃s2 = z̄
s
2 −Ω

sθ̃ s = ξ s1(t)+ ξ
s
2(t)−Ω

sθ̃ s, ∀t > Td. (42)

Therefore, for t > Td, from (41), (8) and (15), we obtain

|ξ s1(t)| ≤
∫ t

Td
‖eĀ22(t−τ)‖

{[
‖A21‖ + γ2

]
|z̃s1(τ )|

+ |η2 + ε
s(τ )|

}
dτ . (43)

Note that (38) is in the same form as (10). Based on Lemma 2, we
obtain z̃s1 ∈ L∞. Furthermore, by using (43), (40), the boundedness
of εs, the stability of matrix Ā22, and Assumptions 2–4, we have
ξ s1 ∈ L∞, ξ

s
2 ∈ L∞, and z̄

s
2 ∈ L∞. Additionally, (26) indicates that

Ω s ∈ L∞. Moreover, due to the use of parameter projection, we
have θ̂ s ∈ L∞. Owing to the definition of z̄s2, we obtain z̃

s
2(t) ∈ L∞.

Now, from Assumption 3, we conclude that ẑs1(t) ∈ L∞ and ẑ
s
2(t) ∈

L∞. This proves the signal boundedness property.
Now, let us prove the second part of the theorem concerning

the learning capability of the FIEs. Consider the Lyapunov function
candidate V = 1

2 (θ̃
s)>Γ −1θ̃ s +

∫
∞

t |C̄ξ
s
2(τ )|

2dτ . Since θ̄ s ∈ Θ s,
when the projection operator is in effect it always results in smaller
parameter errors that will decrease V̇ (Farrell & Polycarpou, 2006;
Ioannou & Sun, 1996), we have

V̇ ≤ (θ̃ s)>Ω s>C̄>ỹs − |C̄ξ s2|
2.

Using (42) and completing the squares, we have

V̇ ≤ (ỹs)>C̄Ω sθ̃ s − |C̄ξ s2|
2

≤ (ỹs)>C̄
(
−z̃s2 + ξ

s
1 + ξ

s
2

)
− |C̄ξ s2|

2

≤ (ỹs)>
(
−ỹs + C̄ξ s1 + C̄ξ

s
2

)
− |C̄ξ s2|

2

≤ −
|ỹs|2

2
+ |C̄ξ s1|

2. (44)
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Let ξ̄ s
4
=
(
|C̄ξ s1|

2
)1/2
. Then, by integrating (44) from t = Td to

t = tf , we obtain
∫ tf
Td
|ỹs(t)|2dt ≤ κ̄ + 2

∫ tf
Td
|ξ̄ s(t)|2dt, where

κ̄
4
= suptf≥Td{2[V (Td)− V (tf )]}. This concludes the proof. �

Appendix B. Proof of Theorem 4

Proof. Denote the state estimation errors of the rth isolation
estimator by z̃r1(t)

4
= z1(t) − ẑr1(t) and z̃

r
2(t)

4
= z2(t) − ẑr2(t). By

using (26) and (3), in the presence of fault s, the state estimation
error of the rth estimator for t > Td satisfies

˙̃z
r
1 = A11z̃r1 + ρ1(z, u)− ρ1(ẑ

r , u)+ η1(z, u, t) (45)

˙̃z
r
2 = Ā22z̃r2 +A21z̃r1 + ρ2(z, u)− ρ2(ẑ

r , u)+ η2(z, u, t)

+Gsθ s − Gr θ̂ r −Ω r ˙̂θ r . (46)

By substituting Gs = Ω̇ s− Ā22Ω
s and Gr = Ω̇ r − Ā22Ω

r into (46)
and by defining z̄r2(t)

4
= z̃r2(t)+Ω

r θ̂ r −Ω sθ s, we have

˙̄z
r
2 = Ā22z̄r2 +A21z̃r1 + ρ2(z, u)− ρ2(ẑ

r , u)+ η2 −Ω sθ̇ s. (47)

The jth component of the output estimation error ỹrj (t)
4
= yj(t) −

yrj (t), j = 1, . . . p, is given by

ỹrj (t) = C̄jz̃2(t) = C̄j(z̄
r
2(t)−Ω

r θ̂ r +Ω sθ s).

Based on (36), the above equation can be rewritten as ỹrj (t) =
C̄jz̄r2(t)+ h

sr
j (t). Therefore, we have

|ỹrj (t)| ≥ |h
sr
j (t)| − |Cjz̄

r
2(t)|. (48)

Note that (47) is in the same form as (33). Therefore, by using (47)
and (48) and by following the reasoning reported in the proof of
Lemma 3, we have

|ỹrj (t)| ≥ |h
sr
j (t)| −

∫ t

Td
|C̄jeĀ22(t−τ)|

[
(‖A21‖ + γ2)χ

r(τ )

+ |η2(z, u, τ )−Ω sθ̇ s|
]
dτ − kje−λj(t−Td)|zr2(Td)| .

Now by taking into account the corresponding adaptive threshold
µrj (t) given by (35) and following the same reasoning logic
reported in theproof of Lemma3,we can conclude that, if condition
(37) is satisfied at time t = t r , we obtain |ỹrj (t

r)| > µrj (t
r),

which implies that the possibility of the occurrence of fault r can
be excluded at time t = t r . �
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