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A Robust Detection and Isolation Scheme for Abrupt
and Incipient Faults in Nonlinear Systems

Xiaodong Zhang, Marios M. Polycarpou, and Thomas Parisini

Abstract—This paper presents a robust fault diagnosis scheme 6?
for abrupt and incipient faults in nonlinear uncertain dynamic  gs
systems. A detection and approximation estimator is used for on-
line health monitoring. Once a fault is detected, a bank of isolation %
estimators is activated for the purpose of fault isolation. A key
design issue of the proposed fault isolation scheme is the adaptiveA®
residual threshold associated with each isolation estimator. A fault
that has occurred can be isolated if the residual associated with </A>
the matched isolation estimator remains below its corresponding
adaptive threshold, whereas at least one of the components of
the residuals associated with all the other estimators exceeds its
threshold at some finite time. Based on the class of nonlinear un- éz)
certain systems under consideration, an isolation decision scheme
is devised and fault isolability conditions are given, characterizing
the class of nonlinear faults that are isolable by the robust fault #:
isolation scheme. The nonconservativeness of the fault isolability
conditions is illustrated by deriving a subclass of nonlinear ¢?
systems and of faults for which these conditions are also necessary
for fault isolability. Moreover, the analysis of the proposed fault
isolation scheme provides rigorous analytical results concerning
the fault isolation time. Two simulation examples are given to
show the effectiveness of the fault diagnosis methodology.

Index Terms—Fault detection and approximation, fault isola- hJ"
tion, nonlinear adaptive estimator, nonlinear uncertain systems.

her
NOMENCLATURE

Ty
f Nominal model dynamics. ty
n Modeling uncertainty. s
i Known bound on theth component of the modeling '

uncertainty. o

) Fault vector function. 7s
B Fault time-profile matrix function. el
o Incipient-fault evolution rate in thih state equation.
Q; Known lower bound ony;.
F Class of faults.
0; Parameter vector associated with #tle fault affecting

theith state equation.

Estimate of the parameter vec.

Known compact set to whic# belongs.

Known vector field associated with theh fault af-
fecting theith state equation.

Diagonal matrix of the poles associated with titie es-
timator.

Online fault approximation model.

ith component of the state estimation error associated
with the sth estimator.

ith component of the dead-zone threshold associated
with the fault detection and approximation estimator.

ith component of the adaptive threshold associated with
the sth estimator.

ith component of the fault approximation error associ-
ated with thesth estimator in the case that faulbccurs.
Computable bound on th¢h component of the param-
eter vector estimation error in the case of a matched fault
function.

Fault mismatch function between thth andrth faults

in the case of an incipient fault.

Fault mismatch function between thth andrth faults

in the case of an abrupt fault.

Absolute fault detection time.

Fault detection time.

Absolute fault isolation time associated with thth
fault.

Fault isolation time associated with thth fault.

Maximum fault isolation time associated with thth
fault.

I. INTRODUCTION

FAULT diagnosis procedure is typically divided into three
tasks: i)fault detectiorindicates the occurrence of a fault
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The objective of this paper is the design and analysis ofnaode of approximating the fault, by using online approxima-
fault isolation scheme for nonlinear uncertain systems. Unlikien methods.
the fault detection problem, which has been extensively inves-The main contributions of this research are the design of a
tigated in the literature, the fault isolation problem has receivéallt isolation scheme as the key part of a diagnosis architecture
less attention, especially in the casenoflinear uncertain sys- based on a nonlinear framework justified by practical consid-
tems Some of the approaches that have been examined for farations, and the analysis of the proposed isolation scheme
isolation in linear systems include the utilizationstfuctured in terms of derivation of adaptive threshold functions, fault
residualsandfixed directional residualgl5], which can be gen- isolability conditions, and fault isolation time. The residual of
erated by observer-based methods or parity relations. For egch fault isolation estimator is associated withaalaptive
ample, the unknown input observer approach [9], [38] and titlereshold which can be implemented online by using linear
eigenstructure assignment method [34] have been used to déiering methods. The case of the occurrence of a particular
erate structured residuals for fault isolation in linear systenfgult is excluded if at least one of the residual components of
whereas fault detection filters [29], [32], [50] have been usédhe corresponding isolation estimator exceeds its threshold in a
for fixed directional residuals. Structured and directional residinite time. Fault isolation is achieved when all faults but one
uals can also be generated via parity relations for fault isolatiefe excluded. Under the imposed assumptions, an incorrect
[14], [16]. The equivalence between diagnostic observers ais@lation decision is precluded. However, two faults may be
parity equations is discussed in [14]. nonisolable if the two fault functions are not “sufficiently

In recent years, there has been considerable research actfifigrent.” This concept is formalized by the definition of the
aimed at the design and analysis of fault diagnosis schemes sjgecalledfault mismatch function
cific for nonlinear systems [3], [12], [26]. Several researchers The presented faultisolation analysis consists of three parts: i)
have developed nonlinear fault diagnosis schemes based on rt§ivation of adaptive thresholds; ii) investigation of fault isola-
linear observer approaches. In [11], the unknown input obseniifty conditions; and iii) computation of the fault isolation time.
approach has been extended to include nonlinear terms. A /48§ derived adaptive thresholds ensure thatan incorrectisolation
of nonlinear systems that has attracted a lot of attention is tifi@cision will be avoided. This is achieved by selecting an adap-
of systems with bilinear dynamics [23], [53], [55]. Some studidd/€ threshold for each possible fault such that the residual as-
have attempted to extend the parity relations approach to ngfciated with the isolation estimator that matches the occurred
linear systems [25], [27]. Recently, there has been significdtlt is guaranteed to remain below its threshold. In the design
activity and some exciting results [18], [37] have been obtain&j @daptive thresholds, there is always a tradeoff between false
in addressing the FDI problem in the case of nonlinear syste{&"ms and missed faults. The analysis of fault isolability condi-
in which the structured modeling uncertainty and faults can @ns characterizes (innonclosed form) the class of faults that can
decoupled. Adaptive and online approximation approachesigisolated by the isolation scheme. This class s rigorously char-
nonlinear fault diagnosis have also been developed [8], [3§Ft€rized by théault mismatch functionwhich intuitively pro-
[44]-[47], [54]. These techniques are based on the idea of ofides @ measure of the difference between two faults. The non-
line adaptation and approximation of the fault function. One GPnservativeness of fault |solab|I|ty.cond|t|ons is illustrated by
the tools that have been widely used is represented loylime the. derivation of algubclass of nonlinear systems angl fault_s.for
approximation modehich is usually in the form of a neural which the_se cc_)ndlt_lon:_a are _also necessary for fault |s_olat_>|llty.
network, a fuzzy logic system, etc. Despite these promising a'BjefauIt isolation timeis dgﬂned as the length of the t!me'|n-
proaches to addressing the problem of fault diagnosis in a néﬂr_val between the detection of a fault and the determination of

linear framework, there have not been many analytical resuffgtYPe: FOr the proposed faultisolation scheme, an upper bound
on fault isolation, especially in the case of unstructured mod" the fault isolation time is derived. The design scheme and the

eling uncertainty and nonlinear faults, which cannot be exac nalytical results are described through the use of two nonlinear
decoupled from each other ’ simulation examples. The first deals with a simple second-order

. . . . onlinear system, whereas the second example refers to the well-
In this paper, we present a fault detection and isolation arc(ﬁi

. . . Kriown FDI benchmark problem concerning a three-tank system.
tecture for nonlinear uncertain dynamic systems, and provi
a rigorous analysis of the performance properties of the relatelg

®The paper is organized as follows. Section Il defines the
isolation scheme. The class of faults considered is allowe%j sses of nonlinear systems and faults to be investigated. The
be nonlinear with respect to the state and input, and inclu

&%sign of the proposed FDI scheme, including the derivation
L on . ive thresholds, i [ i ion lII. i

both abrupt and incipient faults. We consider a class of no adaptive thresholds, is described in Section Section IV
linear systems with full-state measurements and the presenc

Qfé?lyzes the fault isolability conditions on the robust fault
possibly nonlinear and unstructured modeling uncertainty. T

ation scheme. In Section V, the fault isolation time is
. ) fdressed. Finally, the FDI scheme design and the analytical
pro_posed FDI scheme co_n5|sts of a ban_k of nonlinear adap%%ults are illustrated by two simulation examples in Section VI,
estimators, One of them is thiault detection and approxima- 54 section VIl contains some concluding remarks.
tion estimator whereas the others are used for fault isolation
(each associated with a specific type of fault). Under normal
operating conditions, only theetection and approximation es-
timator is used to monitor the process for any fault. Once a In this section, we formulate the classes of nonlinear systems
fault is detected, thdault isolation estimatorsare activated, and faults to be investigated, and discuss the practical motivation

and the fault detection and approximation estimator adopts thiethe proposed formulation.

Il. PROBLEM FORMULATION
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A. Nominal Plant, Uncertainty, and Fault Representation  chastic framework [2], [30]. The FDI scheme presented in this
] o ] work is based on the adaptivethreshold approach.
Let us consider a general multivariable nonlinear dynamic pg regards modeling uncertainty, the following assumption
system described by the differential equation will be used throughout the paper.
Assumption 2: The modeling uncertainty represented by the
&= f(x,u) +n(x,u,t) + Bt — To)p(z, ) (1) vector fields in (1) is unstructured and possibly a unknown
nonlinear function ofe, «, and¢, but it is bounded by some
wherez € R™ is the state vector of the systemg R™ is the known functional, i.e.,
inputvector,f, ¢: R xR™ — N7, andy: R xR xRt — R° - _
are smooth vector fields, andi(t — 7p) is a matrix function iz, w, )] < 7w, ut), V(x,u) €D, VE20 (2)
representing the time profiles of the faults, wh&gedenotes where, for eachi = 1,....n, the bounding function
the unknown fault occurrence time. The vector fiefds;, and 7i(, 1, £) > 0 is known intégra7ble and bounded for G, «)
¢ represent the dynamics of the nominal model, the modeli%ﬁ;sém’e compact regio;w of intereéb D and for allt > 0’.

uncertainty, "’?”d the change in the system dynamics due to Remark 2.2: The above assumption provides nonuniform

fauit, _respectlvely._ For '_[he sake of well-posedness of (1), tkB‘Sunding functions on the modeling uncertainiyz, u,t)

following as_sump.n(;]n will be made. q | in some compact regio® 2 D, whereD is defined in
Assumption 1:The system states and controls rem":“/'a\ssumption 1. It is worth noting that a simpler, though more

bo_unded before "?‘_nd a“e,f the occ;urrengle of a fault, i.e., th‘la'g.\%trictive assumption, would be to assume thas globally
exists some stability regio® C R* x ™, such that(z(z), uniformly bounded, i.e (. u, t)| < 73,V (,u) € R* x R

ut)) €DV Z.O' . . . andVv ¢ > 0, where7; is a constant bound. It is important to
Remark 2.1:Itis worth noting that the reason for 'ntrOducmgemphasize that by allowing eaghto be a function of, «, and
such a uniform boundedness assumption is just a formal OR&H A above formulation provides a framework famuniform

In gen.eral, th"?‘ paper deals with the design and analysis OEJ&JPds thus enhancing the achievable fault sensitivity and
detection and isolation scheme based on the measurementae%

q S el dation dered i reasing the detection and isolation times. For example, in
z(t) andu(?). Since no fault accommodation is considered if o practical applications the nominal model is obtained

thbei paper, ;che feedl(ajack contro_lle;)mus(tj bngChﬂtTtthe MEARY-small-signal linearization techniques (around a nominal
able signals:(t) andu(t) remain bounded for afl > 0 (i.e., operating point or trajectory). In this casg(x,u,t) may

before and after the occurrence ofafau[t). However, Itis IMPQf3 esent the residual nonlinear terms, which are typically
tant to note that the proposed FDI design is not dependent all for () close to the operating point but can be large

the structure of the controller. Actually, as will be clear later oRysavwhere. If nonuniform bounds(z, u, ¢) are not known, the
1 H H - 7 ) 1
the proposed fault dlagn05|s S.Che”."e will m"?"‘e use(t))‘ and designer can consider the worst-case scenario and use uniform
u(t) to yield the detection and isolation decisions, but it will no&onstantboundsﬁ as a special case
T .

influence at a_” the dynamc behavior of system (1). ] As to the faults affecting the nominal system modes, from
_ The modeling uncertainty, represented by thg vector figld 5 qualitative viewpoint, the term(t — 1p)¢(x, ) represents
includes external disturbances as well as modeling errors. In thg deviation in the system dynamics due to a fault. The matrix
fault-diagnosis literature, efforts to enhance the robustnessaft — Ty) characterizes the time profile of a fault that occurs
FDI schemes can be made either at the residual generation st§d&,meunknowntime Ty, and (z, u) denotes the nonlinear
by usingdecoupling techniquesr at the decision making stages, |t function. This characterization allows both additive and
by usingadaptive thresholdsin the first approach, the mod- jtiplicative faults (sinceb is a function ofr andw) [15], and

eling uncertainty is often assumed to be structured, i.e., to béRfn more general nonlinear faults. We let the fault time profile
the form»n = Ew(t), whereE is aknown(or approximately B(-) be a diagonal matrix of the form

known) and not necessarily constant distribution matrix,@and
denotes an unknown function of time. This structured model of B(t — Tp) = diag [Bi(t — 10), . . ., Bu(t — T0)]
uncertainty allows the use of linear and nonlinear state transfor-
mations to exactly decouple faults from unknown inputs [23)vhere3:: & — 3t is a function representing the time profile
[37], [41], [52]. In the cases where such a decoupling fram&f @ fault affecting the-state equation, for = 1,...,n. More
work can be achieved, it provides powerful methods for develPecifically, we consider faults with time profiles modeled by
oping FDI algorithms. However, if the modeling uncertainty is 0 ift<T

. . . . 0
unstructured decoupling faults from modeling uncertainty is Bi(t = 1o) = { l— eait=T0) if¢>T (3
not possible and this justifies the use of adaptive thresholds to =0
obtain robustness at the residual-evaluation stage. In the adapere the scalary; > 0 denotes the unknown fault evolu-
tive threshold approach [3], [7], [10], modeling uncertainty cation rate. Small values of¢; characterize slowly developing
be unstructured but has to be bounded by some suitable constanlts, also known agcipient faults For large values ofy;,
or function. This bound is used to derive thresholds for distithe time profile3; approaches a step function, which models
guishing between the effect of a fault and the effect of modadbrupt faults The main difficulty in dealing with incipient faults
eling uncertainty [7], [45]-[47]. Another important approaclis that their small effects on the residuals can be hidden as if
that has been extensively used to represent modeling uncertathgy are due to modeling uncertainty. The incipient-fault time
in fault diagnosis is the formulation of the problem in a stoprofile described by (3) has been considered in [6], [40], [44]
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Fault Detection and Isolation Architecture

{ — Fault Detection Fault Detection { Alarm
' and Approximation — Decision Scheme :
Estimator

Activation

Identification of the

Bank of Fault | .| Fault Isolation _é_fa_ult that has occurred
Isolation Estimators Decision Scheme !

reference
input

Feedback u Nonlinear Plant .
r Controller

Fig. 1. Architecture of the fault detection and isolation scheme.

to develop a learning-based fault detection methodology. In thisRemark 2.3: In many engineering applications, the full-state
paper, we first consider the fault isolation problem in the gemeasurement assumption in the above formulation may resultin
eral case of incipient faults, and then examine the special cagste a critical and possibly limiting requirement. The removal
of abrupt faults. of this assumption requires the use of nonlinear observers,
Note that the fault time profile given by (3) only reflects thavhich, in general, impose additional restrictions on the class
developing speed of the fault, while all its other basic feature$ nonlinear systems and the type of allowable faults [45].
are captured by the functiof(x, «) described below. For iso- Note, however, that several nonlinear control design methods
lation purposes, we assume that there sréypes of possible require full-state measurements for the design of the feed-
nonlinear fault functions; specifically)(x, «) belongs to a fi- back controller. Such methods include feedback linearization

nite set of functions given by [22], backstepping and adaptive backstepping methods [28],
N . input-to-state stability (ISS) control design [42], and robust
F= {¢1($7U)7 A ($7U)}~ (4)  nonlinear control using nonlinear damping [5]. Therefore, the
. i ) nonlinear fault-isolation design method developed in this paper
Each fault functionp®, s = 1,..., NV, is described by can be applied to such a class of feedback control systems.
. A T AT s T . T Remark 2.4:Typically, a robust feedback control system
¢"(z,u) = [(61) g1 (z,u), - (07) g (2, u)] ®) may “hide” the occurrence of a fault, especially a small, incip-

ient one. While, in some cases, it is desirable to automatically
accommodate a small fault by using the robustness of the
65 € @ C ML), andgs: W x B — RE is a known smooth controller, in most situations sm_aII faults may prognosticate
¢ ¢ ¢ future larger faults that can result in catastrophic consequences,

vectqr field. . . . unless they are detected and accommodated early. This problem
This representation characterizes a general class of nonlinéar

. ; of robust feedback control “hiding” or “desensitizing” fault
faults where the nonlinear vector fielf represents the func- effects has been recognized by several researchers (see, for
tional structure of theth fault affecting theith state equation, 9 y '

whereas the unknown parameter vecfgrcharacterizes the _example, [17], [35], and [51]). Allowing the fault function

“magnitude” of the fault in théth state equation. The dimen—In the above formulation to depend explicitly enprovides a

siong® of each parameter vectéf is determined by both the suitable method for detecting faults, even if the control input

type of fault and the specific state component considered. In t@ﬁehas been adjusted to reduce the effect of the fault on the

case where the fault functiof(z, ) is completely unknown acking error. Another approach that has been proposed to

(ie., ¢(z,u) does not belong t&F), the fault approximation address this problem is based on designing the fault diagnosis

estimator designed in Section Il by approximation methoc?sCheme and the feedback controller simultaneously [31], [43]

can be used to reconstruct online the unknown fault function.
As discussed in [13], most practical faults are nonlinear func-

tions of the system stateand/or input:. For example, the mag- A bank of ¥V + 1 nonlinear adaptive estimators are used in

nitude of a leak in a thermal system or in a chemical processtise proposed FDI scheme, whé¥eis the number of nonlinear

in general, a nonlinear function of the pressure and the tempfawults of the fault classF described in Section Il. One of the

ature. Such failure representation characteristics are capturedonlinear adaptive estimators is ttailt detection and approx-

(1) by allowing the deviatior) to be a nonlinear function of imation estimato(FDAE) used to detect faults. The remaining

« andu. Moreover, it is worth noting that the above formulaones ardault isolation estimatorgFIESs) that are used for iso-

tion allows parametric faults [15] and, in addition, other typestion purposes only after a fault has been detected. Each FIE

of nonlinear faults such as the ones that cause the nominal pleotresponds to a particular type of fault of the cl#5sA block

model to change fronf(z,«) to another new nonlinear func-diagram representation of the overall architecture is shown in

tion. Fig. 1.

where#?, i = 1,...,n, is an unknowny; -dimensional param-
eter vector assumed to belong to a known compacdgdi.e.,

Ill. FAULT DETECTION AND |SOLATION ARCHITECTURE
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Under normal operating conditions (without faults), the The nextstep in the construction of the FDAE is the design of
FDAE is the only estimator monitoring the system. Once the learning algorithm for updating the weigldts Let °(¢) =
fault is detected, the bank of FIEs is activated and the FDAE®)—2"(¢) be the state estimation error. Using techniques from
adopts the mode of approximating the fault function. Thadaptive control (Lyapunov synthesis method) [19], the learning
case where none of the isolation estimators matches the falgforithm of the online approximator is chosen as follows:
that has occurred (to some reasonable degree) corresponds to A
the occurrence of a new and unknown type of fault, and the 6° = Pen {FOZTD[GO]} (8)
approximated fault model can then be used to update the faulere theprojection operatorP restricts the parameter esti-
classF and also the bank of isolation estimators. The faumbation vectord® to a predefined compact and convex region
model generated by either an isolation estimator (in the casedf ¢ 7, I'° = 1" e grxrisa symmetric positive definite
a match) or the detection/approximation estimator can be udedrning rate matrix, and: " x ™ x R — R™**P denotes
for fault diagnosis and possibly fault accommodation. the gradient matrix of the online approximator with respect to its

In Sections 11I-A and 11I-B, the structures and the adaptatioadjustable weights, i.eZ £ 9¢(z, u, 6°) /94°. Thedead-zone
mechanisms for the FDAE and the bank of FIEs will be deperatorD[] is defined as

scribed. <10 0 .
0/ 8 O if 9@ <&@, i=1,...,n
Dl = {co(t) otherwise ©)

A. FDAE
YR : : . -
Based on the system representation (1), the FDAE is Chos\rléhern(a)crZl () is a suitable threshold function that will be specified

as follows: The presence of modeling errors (denotedyby, u, t) in the

37 = —A%3° — 2) + f(z,u) + l,u, 6°) (6) state equation) causes anonzero state estimatior&fthreven
in the absence of a fault. The dead-zone operB{gfprevents
adaptation of the approximator weights when the modulus
of every estimation error componedit(t) is below its corre-
o 0 o o . ) . gﬁonding threshold)(¢), thereby preventing any false alarms.
andA” = dlag()fl’.'."’)‘";)’ where—AO)\i < 0 is theith esti- Thedecisiononthe occurrence of afault (detection)ismadewhen
mator pole. The initial weight vectof,'(0) is chosen such that i, 1oquius of at least one of the estimation error components
¢ (3?7% 90(0)2I = 0,V (z,u) € D, which corresponds to the .0(¢) exceeds its corresponding threshél¢t). More precisely,
case where the system is in “healthy” (no fault) condition.  theabsolute fault detection timg, is defined as the first instant

A key component of the nonlinear adaptive estimator def time such thate?(¢)| > €)(¢), for t > Tj, for somei, that is
scribed by (6) is thenline approximatordenoted by, which

wherez® € R" is the estimated state vectq}-,ﬁ%" X R X
R? — R is an online approximation model? € R? repre-
sents a vector of adjustable weights of the online approximat

can be described as follows: téth component; of the func- T, £ inf U {t > To:|2(t)| > &(t)} . (10)
tion ¢ has the structure i=1
. . v Thefault detection timé, is defined as the difference between
Pi(z,u,0%) = Zcij<pj(a:,u,oj) cij €ER o, €RY (7) the absolute fault detection tin#; and fault occurrence time
=1 To, i.e.ty = Ty — To.

whereg; (-, -, -) are given parametrized basis functions and __The time-varying dead-zone thresheftit) need to be suf-
and the components of; are the parameters to be determine@g'e”t'y large to prevent false alarms. To this end, we choose

ie., 60 £ Col(cij,gj:i =1,...,n, j=1,...,v).Inthe < (t) as
presence of a faultj provides the adaptive structure for approx- () 2 i A=) ma(2(), u(r), 7)dr (11)
imating online the unknown fault function. This is achieved by A " ’ ’

adapting the weight vectéF () which has the effect ofchangingwhich can be easily implemented as the output of a linear filter
the input/output behavior of the approximator. The term “onlingyith the transfer functiori /(s + A?) and under zero initial
approximator” is used to represent nonlinear multivariable agonditions) whose input is given by (t) = 7 (x(t), u(t), t).
proximation models with adjustable parameters or weights, suQBte that, as long a3 is bounded, the output of the stable filter
as neural networks, fuzzy logic networks, polynomials, spling@mains bounded as well.

functions, wavelet networks, etc. In the last few years, severaln the absence of any faults and with the initial weights of the
online approximation models have been studied in the contgline approximator such thé(a:,u, éO(O)) = 0, by (1) and (6)

of intelligent systems and control [33], [49], [56]. Some of thg can be easily verified that each componéhit) of the state
properties of online approximators, like linear parametrizatiqfstimation error satisfies

and “curse of dimensionality” [1], [57], and localization [48], t .

also play a crucial role when such approximators are used, in this |6?(t)| = / e N (2 (), w(r), T)dT
paper, as estimators of fault functions. Although a comparison of 3
different online approximation models would reveal some inter- </ e N (2(r), u(r), T)dr = 9(8). (12)

esting issues (see [57] for an extensive treatment of the approx- 0

imation properties relevant to rather a large class of approxinEaerefore, therobustnessof the detection scheme, i.e., the
tion models), in this paper, we simply consider the general claasility to avoid any false alarms in the presence of modeling
of sufficiently smooth parametrized functions represented by (@hcertainty, is guaranteed. In the special case of uniform (con-
as online approximators. stant) boundsj; on the modeling uncertainty, the dead-zone
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threshold is given byed(t) = #;/A%(1—e=*1t). The whered; € R fori =1,...,n,s=1,..., N, is the estimate
dead-zone can be further simplified tocanstantthreshold of the fault parameter vector in tlith state variable. Moreover,
&9 = 75;/\Y by taking a uniform upper bound over time. A® =diag(Af,..., A7), where—A7 < 0 are design constants

" As is well known in the fault diagnosis literature, there i§epresenting the estimator pole locations. For notational sim-
an inherent tradeoff between robustness and fault-detectabiljicity and without loss of generality, in this paper we assume
The detectability property of the nonlinear fault diagnosiatA; = A;, foralls =1,... N.

scheme described by (6) and (8) was rigorous|y investigatedThe design of FIEs is similar to the design of the FDAE. Each
for the special case of a constant boufdn a previous work isolation estimator corresponds to one of the possible types of
[40]. For completeness of the presentation, this detectabilltgnlinear faults belonging to the fault clags The adaptation

result is also stated in the following theorem (the proof can @the isolation estimators arises due to the unknown parameter

found in [40]). vector§;. The adaptive law for updating eaéfl is derived by
Theorem 3.1:Consider the nonlinear fault diagnosis schemising the Lyapunov synthesis approach, with the projection op-
described by (6) and (8). erator restricting; to the corresponding known s8¢ . Specif-

. . A A~ .
a) If there exists an interval of timle,, #o], over whicht, >  ically, if we lete} = x; — &7 be theith component of the state
t; > Ty, such that at least one componentz, «) of the ~€stimation error vector of theth estimator, then the learning al-

fault vector¢(x, ) satisfies the condition gorithm is chosen as:
(s (=T 4. 27 5’ s s 5
e l1—¢ i (x(7T), u(r))dr| > o 0; = Po: {L'}g; (z,u)e] } (15)
t1 %
(13)

wherel'? = FfT > 0 is a symmetric, positive—definite learning
then a fault will be detected, that ig;'(t2)| > €. rate matrix. Note that, since the isolation estimators are acti-

b) For any positive constants;, A{ and for anyt, > To, vated only after the detection of a fault, there is no need to use
there does exist a time > ¢, such that if at least one the dead-zone on the state estimation error. In addition to the
componentp; (x, «) of the fault vectord(x, «) satisfies state estimation error of each isolation estimator, the parameter

the condition estimatefs also provides useful information for fault isolation
[pi(x(t), w(E))] > 27, VtE [t ta] purposes. However, it is important to stress that it cannot be
guaranteed that for the actual fault the parameter estififate

then a fault will be detected, that igJ(¢,)| > €. 10 the t | | <t ;
The first part of the above theorem shows that, if at least ofignverges fo the true va ¢, uniess we assume persistency o
excitation [19], a condition which, in general, is too restrictive

component);(x, ) of the fault vector functio ) satis- ST ) -
p Wiz, v) Wl u) (in this paper, we daotassume persistency of excitation).

fies (13) over some time intervdt, , 5], then a fault will be ’ . > . .
The fault-isolation decision scheme is based on the following

detected at = ¢, thus triggering the learning algorithm. Intu-, "' S : :
itively, condition (13) includes the case where the fault functiofftuitive principle: if thesth fault occurs at some tini& and is

:((t), u(t)) changes its sign over time. The second part of tififtected attimé;, then a set of adaptive thresholfjg; (¢), © =

above theorem shows that, if there is no change of sign and the: - »*} €an be designed such that tite component of the
magnitude of the fault function; is greater tha#; for a suf- state estimation error associated with #ib estimator satis-

ficiently long time, then a fault will be detected. fies [;(t)] < pi(t), for all ¢ > T,. Consequently, for each

In general, after the detection of a fault (i.e., for> 7y), $ = 1,---, N, such a set of thresholdg:;(#),i = 1,...,n}
the dead-zone becomes unnecessary during the approximadh bg designed for t'hﬂh fault |§olat|on estimator. In the fault
phase and can therefore be disabled. The projection opgratdgolation procedure, if for a particular isolation estimat@nd
is required during the approximation phase in order to guaranf¥nei = 1,...,n, its state estimation error satisfig$(¢)| >
the stability of the learning algorithm in the presence of approx; (¢) for somet > 7;, then the possibility that the fautmay
imation errors, which may be caused by the |nab|||ty of the Olﬁlave occurred can be excluded. USing this intuitive idea, the fol-
line approximator to match the fault function exactly. Moreovelowing fault isolation decision scheme can be devised.

some stability properties of the above FDAE (witlt@nstant Fault isolation decision schemef, for each r €

dead-zone threshok{), e.g., the boundedness of the state and., - - -, V}\{s}, there exist some finite tim& > 7;; and some

parameter estimates and the convergence of the estimator er@r{1,...,n} such thaje; (")| > i (t"), then the occurrence

to a neighborhood of zero in the presence of modeling uncéi-the faults is deduced. The absolute fault isolation time is

tainty, have been analytically studied in [6]. defined asl? ; = max {t",r € {1,..., N}\{s}} and the fault
isolation timet: , is defined as the difference betwe#fi

B. Fault Isolation Estimators and Decision Scheme and the absolute fault detection tirig, i.e.,t2 , = 72, — Ty

After a fault has been detected, the isolation scheme is actiln order to gain a deeper insight into the above-stated fault
vated (see Fig. 1). Specifically, the followifg nonlinear adap- isolation decision scheme, we refer to Fig. 2. For the sake of sim-
tive estimators are used as isolation estimators: plicity, a scalar case is considered (i.e., the indlexdropped).

A N — 2) + flou) + J)S(a: u éS) Moreover, without loss of generality, we assume that the class
’ o F is made up of three different kinds of faults (i.87,= 3) and
s oy | (as) ) s s\ L that Fault 1 occurs at timi#,. After detection of the occurrence
(/) (‘Tvuve )_ |:(91) gl(‘T7u)7"'7(9n) gn(x7u):| - . .
of a fault at time instanf,; (see (10)), the FIEs are activated and
(14) the time-instantg? andt> are determined. Accordingly, Fault 1
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Fault #1

u 4 .

»| Nonlinear Plant -

Fig. 2. Example of application of the fault decision scheme to a scalar three-fault case. A faulty situation is detected at tinffe-jrastdriault number 1 is
isolated at timeT;; ;, = t°.

isisolated at timé’. | = ¢?. In the situation presented in Fig. 2, Lemma 3.1:If the incipient faults occurs, then for at > 7

a constant boune’ = 7/)° is considered for the sake of sim-and for alli € {1,...,n}, theith component of the state esti-

plicity [see the discussion after (12)]. mation error of theth isolation estimator satisfies the following
Remark 3.1:In the fault-diagnosis literature, one can findnequality:

several types of observer schemes. For example, within the fault

isolation framework, thdedicated observer scherfizOS) pro- ()] < e Ai(t=T)

posed by Clark and thgeneralized observer scheni@®0S) ! “Jr,

presented by Frank are typically used [4], [9], [36]. In both

schemes, the FDI architectures consisiobbservers, where X [Kig (O +1i (2(7), u(7), 7)

N is the number of faults under consideration. In the DOS, the . T

sth residual is designed to be sensitive only to stie fault, + e~ eu(r=T) ( f(T)) g5 (x(T),U(T))HdT

s =1,..., N, but decoupled from all other faults. In the spe- . NGT)

cial case where the DOS can be designed, this scheme permits + | (Ta)[ e ¢ (16)

a single detection and a single isolationdfaults, even if they

occur simultaneously. A more commonly used scheme is th

generalized observer scheymehere thesth residual is sensi- e a (s e\

tive to all faults but thesth one. The decision function of the &)= (9¢ —9; (t)) g7 (x(t),u(?)) 7

GOS is as follows: if theth residual is zero (or below a certain ) o }

threshold) and all the remaining residuals are nonzero (or abégeresents the fault function estimation error in the case of a

their corresponding thresholds), then a decision on the occliftched fault. . .

rence of thesth fault is made. Therefore, the above-stated fault ~Proof: On the basis of (1) and (14), in the presence of

isolation scheme falls within the GOS architectural frameworke faults, theith component of the error dynamics of thi
Clearly, a basic role in the above fault isolation scheme igolation estimator fot > 7; is given by

played by the adaptive threshold¥(¢). In this respect, we now

t

ere

-5 5 —a; (t—=1Y s\ s
proceed to compute nonconservative thresholds associated with(t) = — Aie; (1) + (1 — 0T )) (07)" 97 (x(t),u(?t))
the residual of each fault isolation estimator in the general case A T
of incipient faults (in the following analysis, we denote By - (9i (t)) gi ((8), u(®)) + iz (8), u(t), 1)
the absolute fault detection time given by (10)). The following . o t=10) {70\ T s
lemma provides a bounding function for the state estimatorerror = — i€ (f) — g7 (=1 (971 (t)) g; (@ (#), u(?))
of the sth isolation estimator in the case where the incipient fault . T

— e—i(t=To) s _ g3 s

s occurs. Later on, the bounding function will be used to derive + (1 ¢ ) (91 i (t)) gi (x(t), u(t))

adaptive thresholds for the fault isolation scheme. + n:i(z(t), u(t),t).
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Therefore, the solution to the previous differential equation is

t
e(t) = / NI (1 e I ) i (rydr
Ty

it
_ / e—)\i (t—‘r)e—ag(‘r—Tg)

Ty

()" gt ue)

t

+ [ NI et ), rydr
Ty

T (Tye T,

whereé?(t) is defined in (17). By taking norms, we have
t
O < [ M0 (1o ) e ar
Ty

-t
+ / N | (w(r), (), 7| dr
Ty

t
+ e (Ty)| e N T +/ o Ai(t=T)
Ty

e~ i(m=Th)

dr.

A? T 5
(0:1) " g1 (@(r),u(r))
Note that0 < 1 — ¢~«(=T0) < 1. Then, we obtain
t
o) < [ e
Ty
[+ e

| @)t toraton | ar

t
b [ e el ute) 0l dr
Ty

+ |e3(Ty)| e N T,

6T
|6:02)
X
0: (4 ki) 4 M) le; (Ty)le (e
+)
o) |5 () i l s
—1 180 5, [ wtt

Fig. 3. A block diagram of the algorithm for generating online the adaptive
thresholdu:(t).

interpreted as a tuning parameter that can be set by exploiting
somea priori knowledge of the fault developing dynamics. If no
specific knowledge of the fault evolution rate is available, it is
always possible to make a cautious (and possibly conservative)
choice of a suitably smatk;. Note thate—*(*~T0) decreases
with respect to; and (¢t — Tp). In addition, asT,; > To, it
follows that:

C—(yz‘(t—To) < C_ai(t_Td)'

(19)

Hence, based on (16), (18), and (19), the following threshold
functions for fault isolation are chosen:

t
i) = [ ehe

Tq

. |:(Iif (7—) + e_ai("'_Td)

(7))

g7 ((r), w(T))] + i (), u(7), T)} dr

+ e (Ty)| e M1, (20)

The bound described by (20) represents an adaptive
threshold, which, as discussed in [3], [7], [10], has obvious
advantages over a fixed threshold. The adaptive threshold can
be easily implemented online, as shown in Fig. 3. Specifically,

Equation (16) follows directly from (2), thus concluding theyq first term of the threshold can be implemented as the output

proof. [ |
Although Lemma 3.1 provides an upper bound on the state
estimation error of thaeth estimator, it cannot be directly used

of a linear filter (with the transfer functioh/(s + A;)) with the
) 197 (= (8), w())]

nput given by (mf(t)+c_@f(t_Td)|éf(t)

as a threshold function for fault isolation because in (16) the 7 (x(t),u(t),) and under zero initial conditions.

fault approximation erro€? (¢), the fault evolution ratey; and

Let us now address the special case of abrupt faults. As de-

the fault occurrence tim, are unknown. However, as the esScribed above, large values of the fault evolution ratén (3)

timate 67 (¢) belongs to the known compact parameter@gt
0s — 63(t)| < k3(t) for a suitables: (¢) dependent on

we have

the geometric properties of the $8f. For instance, letting the
parameter seb; be a hypersphere (or the smallest hypersphere
containing the set of all possib#(¢)) with centerO; and ra-

dius Rz, it follows immediately thak:: (t) = RS + |63(t) — O2

and

O (CRLIO) WA ORTE
k(0 lg? (0. (D).

(18)

represent abrupt faults. Specifically, we consider abrupt faults
whose time profiles are modeled by a step function, i.e.,

0 ift <

whereTj is the occurrence time of the fault. Then using (20)
in the special case wherg approaches infinity, the following
adaptive thresholds for abrupt-fault isolation are chosen:

(21)

t

pe(t) = |e(Ty)| e =T 4 / =N (=)

Ty

R - 13 @) )] + 7 () ur), ] dr. - (22)

Moreover, we assume that, for the incipient fault time profile Again, the adaptive threshold described by (22) can be easily

given by (3), the unknown fault evolution rate satisfies >

implemented as the output of a linear filter (with the transfer

&;, fort = 1,...,n, whered; denotes a known lower boundfunction 1/(s + X;)) with the input xi(¢)|g?(z(t),u(t))]
on the unknown fault evolution rate;. In a senseq; can be + ; (x(t),u(t),?) and under zero initial conditions.
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IV. FAULT ISOLABILITY CONDITION where h"(t) is the fault mismatch function defined in (23).
. . . . . Therefore, the solution of the above differential equation for
In this section, we analyze the fault isolability condition o T, is

the proposed FDI scheme; the condition deals with the fault sen=
sitivity property and characterizes the class of faults that can t;,(?t) B /

t
r —Ai(t—T) p 57 r -\ (t—Tq)
isolated by the robust fault-isolation algorithm. Moreover, the& ¢ hit (r)dr + ¢ (Ta)e ‘

T,
nonconservativeness of the isolability condition is illustrated by ¢

t
the derivation of a subclass of nonlinear systems and a subclass —|—/ e~ N (a(7), ul(r), T)dr.  (25)
of faults, for which this condition is also necessary for fault Ty
isolability. First, the general case of incipient faults is investBy using the triangle inequality, we obtain
gated.
Intuitively, faults are easier to isolate if they are sufficientl¥g(t)| > /t =N (t—T)h$1‘(7_)d7_
i Td T

: : : — lef (L) e~ N1
“mutually different” in terms of a suitable measure. In the fol-

lowing analysis, we introduce fault mismatch functiom the t CAue—)
form: - / e N m(a(r), u(r), T)dT| . (26)
Ty
RET(t) é(1 — e*af@*To)) (eg)T gf (z(t), u(t)) We recall that the threshold for the state estimation error of the
N rth estimator is
—(B®) g @), u). t
rs=1,...,n,1r#s (23) pr(t) :/ e~ (E=T) [(ﬁ;(T) + e~ (m=Ta) QZ(T)D
T

which can be interpreted as the difference between the ac- g (), u(r))| +ﬁi($(T),u(T),T)}dT
tual sth fault function in theith state equation, represented
by (1 — e (t=1))(92)T gs(x, ), and the estimated fault + |5 (Ty)| e~ T,

function (67)T g7 (x,v) associated with any other isolation ) ) ) )
estimatorr whose structure does not match the actual fault Therefore, if (24) is fulfilled, the occurrence of the faulis
Before stating a theoretical result on the isolability of incipier*cluded at time”, i.e., [ (¢")] > pi(¢"). If this is satisfied
faults, we need the following definition. foreachr € {1,..., N}\{s}, then thesth fault can be isolated,
Definition 1: A fault is isolable if the fault isolation schemethus concluding the proof. _ u
described in Section Il is able to make a correct decision in aRemark 4.1:According to the above theorem, if, for each
finite time. r € {1,...,N}\{s}, at least one of the components of the
The following theorem characterizes the class of incipiefult mismatch functior™ (¢) satisfies condition (24) for some
nonlinear faults that are isolable by the proposed FDI scherfie™> Za, then the correspondinigh residual component asso-
according to Definition 1. ciated with the isolation estimaterwill exceed its threshold
Theorem 4.1:Consider the fault isolation scheme describe@t?” i-€.,[¢; (¢")| > 4 (¢"), hence excluding the occurrence of
by (14), (15) and (20). The incipient faulis isolable if for each therth fault. Therefore, the above theorem characterizes in non-

r € {1,..., N}\{s} there exist some tim& > T, and some closed form the class of nonlinear faults that are isolable by the
i € {1,...,n} such that theth component"(¢) of the fault Proposed FDI scheme.
mismatch function satisfies the following inequality: Remark 4.2:Based on the bound;(x(t), u(t),t) on the

modeling uncertainty, we can easily obtain a more practical
version of (24) as follows:

o
/ e~ M=) T (r)dr

Ty

T

/ MR (1Y dr
Ty

.
> () e 4 [ e

Ty

.
> 2|ef (Ty)] e M0 =T 4 / =N (=)

Tq

;7))

AR (r C—@i(T—Td)
gl (z(r), w(m )| + 7 (z(7), u(r), T):| dr [( () +

;(r)))

gt ) ()] + 2 (a(r), u(vm} ar. (27)

+/ Ny (a(r),u(r), mydr | (24)

Ty

Note that all the quantities on the right-hand side of inequality
) 27) are now known. Therefore, given a particular fault, its fault
Proof: Based on (1) and (14), in the presence of the faylty|apility can be checked by condition (27) and, as a conse-
s, theith component of the error dynamics associated with thgyence "the class of isolable faults can be approximately deter-
estimatorr is given by mined by a suitable numerical algorithm.
From a qualitative point of view, the fault isolability condi-
& = —Xie; +mi(z,u,t) + R7(¢) tion describes an interplay between the fault mismatch function
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h;" onthe one hand and the maximum fault approximation errdition for fault isolability if (26) is an equation. According to
in the case of a match, the modeling uncertainty and the initi@5), this needs the sign condition given by (28) and

conditions on the other hand. It should be noted that (24) is ob-.¢~
tained in the worst-case scenario. In other words, in general, %?6 e~ NE =D per (Y dr
is a sufficient condition for fault isolability. However, among all|” 7«

possible fault scenarios, there exist some cases such that (24) is

also necessary for fault isolability, as stated by Theorem 4.2. +

Theorem 4.2:Consider the fault isolation scheme defined by

> |ef(Ta) e —H)

T

/ M= (), ), 7V
Ty

(14), (15), and (20). Inequality (24) is also necessary for falffiearly, the above inequality is always guaranteed by (24), thus

isolability, if the following conditions are satisfied:

= —sign [ (Ty)]

7
sign l/ e_)‘f(tT_T)hf”('r)dT]

= —sign [/ G_Ai(tT_T)ni(.T(T),U(”');”')d’/’] (28)

Ty

wheret” is defined in Theorem 4.1, fore {1,..., N}\{s}.

concluding the proof. [ |
Remark 4.3: Theorem 4.2 characterizes a subclass of non-
linear uncertain systems and a subclass of nonlinear faults for
which the fault isolability condition described by (24) is both
sufficient and necessary for fault isolability. The conditions
given in the theorem are existence ones, and are included only to
gain a more theoretical insight into the nonconservativeness of
Theorem 4.1. In other words, the fault isolability condition given
in Theorem 4.1 isiot conservative in the sense that, among all
the possible nonlinear systems and faults under consideration,
there does exist a case in which a fault will not be isolated by the

Proof: In the proof of Theorem 4.1, suppose that (26) besroposed FDI scheme, unless condition (24) is satisfied.

comes an equation at tint&, i.e.,

,
5 (£7)] = / NI (r)dr

Ty

r

| e natr) ute), vy
Ty

— MO |y

A Special Case—Abrupt Nonlinear Fault$he analysis
developed so far for the case of general incipient faults can be
specialized to the important case of abrupt faults. Specifically, in
order to investigate the fault isolability properties in the abrupt-
fault case, we redefine the fault mismatch function as

B () 2 (617 3 (e(t). u(e)~ (020)) g2 al0). u(t)) (30)

which represents the difference between the actual fault

In this case, if the fault isolability condition (24) is not satisfieds,nction (9$)Tg$(l, w) and the estimated fault function

that is

.
/ NI R (7Y dr

Ty

.
<2jq(@] e 4 [ enen

T

;7))

g (a(r), ()] + 73 (2(7), u(r), T)} dr

+ / e~ (tT_T)m(x('r), w(T),7)dT
Ty

then, by (29), we obtain

< [ e

Ty

(7))

gt ) ur )| 4 7 ), ), ﬂ} dr

e (L)) e =T
—}(t").

(é;‘(t)) g7 (z,u) associated with the estimaterwhose struc-
ture does not match the actual fasltThen, from (24), in the
special case wher@; approaches infinity, the following result
follows immediately.

Corollary 4.1: Consider the fault isolation scheme described
by (14), (15) and (22). The abrupt faulis isolable if, for each
r € {1,...,N}\{s}, there exist some timg > 7; and some
¢ € {1,...,n} such that theth component.;”(¢) of the fault
mismatch function satisfies the following inequality:

T

/ l e M=) iif”(T)dT
Ty

T

> 2lq(@e M 4 [ ene o
Ty
[ () g (@) ()] + 7 (), (), 7)) e

ks

n / =D ()l ), 1) |
T4

V. FAULT ISOLATION TIME

One of the most important performance criteria in fault diag-
nosis isfault isolation time which refers to the time taken by
the fault isolation scheme to identify a fault that has occurred
[15]. However, in the literature, there exist very few analytical
results on fault isolation time. In this section, we derive an ana-
lytical upper bound on the incipient-fault isolation time, which

Therefore, the fault cannot be isolatedtat From the above is defined as the length of time between the detection and the
analysis, it follows that inequality (24) is also a necessary coisolation of a fault. Specifically, we have the following result.
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Theorem 5.1:Consider the fault isolation scheme describe@ihe aforementioned inequality can be rewritten as
by (14), (15), and (20). For eache {1,..., N}\{s}, assume
that there exist a time interv@ll; + ¢7, 7, + t5], an indexi €

Ty+t
{1,...,n}, and a scalaé?” > 0 such that, for alt € [T}, + / e N Tt por oy

{a Td + t72] Td+t;
sr r —a: (=T | 5r ” Ty+t
B (O] 2 (mi() + e T |014) ) o (0(2), () >l [ e
+27; (x(t),u(t),t) + & (31) Tatt]
wheret] > 0, # > ] + D" (t]), andD" (#{) is a time period : [(w;‘m e ML G| ) - gk (o) u(r))]
given by —
D" () :)\i In [1 + 6% <2)\i / e N Tatti=m) + 273; (z(7), u(7), 7'):| dr 4+ ¢t
% [ Ty
_ . Ty+t]
JCEEt i) | ( [ e
Ty
+lgb ) )]+ 2 o(), (), ) e N /Td“? RN
Ast] ] T
Fahlatale t) ' (32) : {(m;(T) t (=T ér(v)‘)
Then, the maximum fault-isolation time for the incipient fault ' '
Savenby. S g5 (@), w(r)] + 2 (7, u(7), H} dr ). (35)
fsol = max {t11 + D (t11)} . (33)
re{l,.., NI\ {s}

Proof: In order to compute the fault isolation time, we . .
adopt a more practical version of the fault isolability conditiohOW: consider a time instaaf such that
given by (27), whose right-hand side is based on known quan-
tities. Specifically, for a givem € {1,..., N}\{s}, consider a

Tyt )
time instantt e [¢7, 5] such that / ¢ NI D RS (1) dr

Ty

Tat+t
—Ai(Tatt—7)ger . Ty+t] B
/n e hi"(r)dr < 2] (Ty) e Mt +/ oA (Tatt]—7)
A T ) N
> 2 (Ty)|e™ it —|—/ e~ MiTatt—r v —a,(r=Ta) | jr ‘
lei (L)l - (nz (T)+e 67 (r) )
' [(ﬁ’i“) eI or ) 1gF () ()] + 27 (7). (), ﬂ} dr. (36)

i (@ (), w(T))| + 27:(x(7), u(r), )| dr. (34 . . .
l9i (@(m)s u(m)l + 20 (), ul() )} (34) Note that the previous definition of time-instafjtstems from

From the inequality assuming thafel (T, +1¢7)| < |ul (Tu+t7)|. Otherwise,
Tu+t Ty+t leX (Tu+ )| > |ui(Ta+t7)| and the possibility of the
/ e~ NTatt=m) ey iyl > / e~ AiTatt=m) occurrence of the fault would already be excluded. Hence,
Ta Tatty from (36), it follows that (35) is satisfied if
Td+t7£
hIT(r)dr| — / ef)‘f(Td'H*T)hfr('r)d'r T.4t
Ty / G—Ag(Td—l—t—‘r)hfr(T)dT
it follows that a sufficient condition for (34) to be satisfied is Ta+t]
given by . Y Tatt -
Lot > 2| (Tl e ™ + / AT
/ e—)\; (Td+t_7-)hfr(7')d7' Ta+17
Tatty r —a; (T— o r
o o | (s 9 | Lo )
> 2| (Ty)] e Nt -l—/ ¢ N Tatt=m) B N (f—tT
Ty + 27 (x(7),u(r),7) | dT + € i(t=t0)
' [(H;(T) e é;j(T)D ! AT+ =) || 7
(2 [T e i) i ato),utr)
g5 (), w(r )] + 25 (o7, (), ﬂ} dr (%:‘( et i)
AR T ’ e T
Ta+t] \
— N (Tyg+t—7) 87 . r
+ /T TN BB (1) dr | +2m; (x(T),u(T),T)} df+2|e;(:rd)|e—%). (37)
d
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Then, under (31), we obtain

Ta+t
/ e (Td“_T)hfr('r)d'r

Td+t'£

Ta+t

Ty —|—tI

Ta+t
> / o= (Tat =)

Ty —|—tI

0:(7))
NgE (e () ()| + 2 (), (), ﬂ} ir

+ 8 (1),

By combining (37) with (38), we have
o

)

(1 _ e—)\i(t—tI)) S2| (T et + o Ni(t—t])

Ty+t7 .
. <2 / S
Ty

. {27771 (@(r), ulr), 7)
+ (ki) e
~ |g;‘<x<7>,u<r>>|} dr

+ 2|er (Ty)] e—w).

The previous inequality can be simplified as

ST
6"

- (1 _ e—Ai(t—tI)> >4|e (1)) et 4 9= Ai(t—t])

Ty+t7
. / L oA @t

Ty
(e

i (@(7), u(7))|

+ 27 (x(7), u(r), 7'):| dr.

;7))

;7))

By some algebraic manipulation, we obtain

1 1 Tatt] .
t=t'+ —1In|l+ — 2)\1‘/ e~ (Tatt]—7)
Ai 67" Ty

0:(7))
g (), wl(r)] + 20 (), u(r), T)} dr

+ 4N |€(Ty)) CMIH )

The proof is completed by lettin” (#7) £ ¢ — 7. [

Remark 5.1: By the previous theorem, if the fault mismatch
componenth?”(t) is sufficiently large for some time period
[Ty + 7, Ty + t5], which, in turn, is longer than the time period
D (#7) given by (32), then the possibility of the occurrence of
the faultr is excluded at tim&y+¢ +D" (#}). Note thatD” (¢])
can be easily computed by linear filtering techniques. Specif-
ically, the integration term in (32) can be implemented as the
output of a linear filter (with the transfer functiary (s + A;))
with the inputg/«a;’(t) e w T | 0r(e)| ) g (), u(t))] +
27 (x(t), u(t), t) and under zero initial conditions. In addition,
this theorem describes a relationship between the fault isolation
time and the magnitude of the fault mismatch functigfi(z),
which is represented by the maximum positive const#fit
satisfying (31). More specifically, (32) shows that the time
period D" (¢7) decreases with respectdy. In other terms, we
obtained analytical evidence for the intuitive fact that the larger
the fault mismatch function, for a sufficiently long period of
time, the earlier a fault can be isolated.

Remark 5.2:In addition to providing an upper bourtd,
on the isolation time of the incipient fault, the above the-
orem also gives a relationship between this upper bound and
the fault evolution ratey;. Specifically, (32) and (33) show that
the maximum fault isolation tim&, ; decreases with respect to
a@;, which means that the faster a fault evolves, the earlier it can
be isolated.

As in the incipient-fault case, the following results provide an
estimate of the abrupt-fault isolation time.

Corollary 5.1: Consider the fault isolation scheme described
by (14), (15) and (22). For eache {1,..., N}\{s}, assume
that there exist a time intervill; + ¢7, T; + t5], an indexi €
{1,...,n}, and a scalaf?” > 0 such that

Note that the left-hand side of the aforementioned inequality

is an increasing function df whereas the right-hand side is
decreasing function af Therefore, the fault isolation time can

be obtained by solving the following equation for

ST
6"

(1 e MDY =4 () e 20 MO

Ty+t]
. / A (Tatt] =)
Ty

i (@(7), u(7))|
+ 27 (x(7), u(r), 7'):| dr.

;7))

B (8)] 2 w7 (8) g7 (2(8), u(e)] + 20 (2(8), u(t).£) + 67",
Vite [Ty+t],Ta+ 5]

wheret} > 0, t5 > t7 + D" (#7), andD"(¢7) is a time period
given by

SYANATA 1 1 Tatti —X (Ta+t7—7)
D (tl):)\—ln 1+6? 2)\1 . e 1
(ri (1) gi (2(7), w(7))]
127 (x(7),w(7), 7)) dr
+ 4N |€5(TY)] e—wﬂ .
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Then, the maximum fault isolation time for the abrupt fauls wherez! = [21 23]7 and2? = [#? #3]* denote the esti-
given by mated state vectors associated with estimator 1 and estimator
~ . e 2, respectively, ang-A < 0 is the filter pole locationg® and
fisot = e () {tl +D (tl)} . 62 are the adjustable parameters. For the FDAE, the online ap-

. , . . _proximator is implemented as a continuous radial basis func-

Proof: Consider inequalities (31) and (32) in the speciglyn (RBF) neural network with eleven fixed centers evenly dis-
case wherey; approaches infinity. Then, the above results cafy, teq over the intervdl-2, 2]. As described in Section IlI-A,
be immediately obtained. " the stability and fault-detectability properties of the FDAE have
been investigated in [6], [40]. Note that, in this example, faults
are only possible in the state componenf therefore, for the

We now present two examples to illustrate the effectivenesake of notational simplicity, the state indeis dropped.

of the proposed FDI methodology. The first example is basedWe perform the simulation with the following nominal
on a simple nonlinear system, and aims at showing a complststem parameters: = 0.9, { = 0.6, ¢ = 0.95. The control
application of the analytical results presented in the paper. Tingut is set tou(¢) = 0. The modeling uncertainty is assumed
second example addresses the well-known three-tank bertcharise out of a 5% inaccuracy in the value ©flt is also
mark problem in FDI [21]. This application is particularly im-assumed that the uncertainty {is at most 10%, which
portant in order to point out both the practical significance afives a nonuniform bound on the modeling uncertainty as
the FDI problem statement in terms of faults with known func; = |0.2w¢(1 — ¢(x1)?)z2|. The bounding functior is clearly
tional structures, and the applicability of the proposed FDI apounded in any compact region of the state space. Moreover,

VI. SIMULATION RESULTS

chitecture to deedback controlled system we set\ = 5 and~ = 1 for the isolation estimators.
. Fig. 4 shows the simulation results when an incipient fault of
A. Van Der Pol Oscillator Example type 1, with#* = 0.75 and the fault evolution rate = 0.2,

In this section, we use the proposed FDI scheme to deteccurs at = 10 s. The evolution of the actual fault function
and isolate incipient faults in a simple nonlinear second-ordéty) (solid line) and the output of the neural network approxi-
dynamic system, i.e., the Van der Pol oscillator, which is d&rator¢(y, 6) (dash-dotted line) associated with the FDAE es-

scribed by timator are shown in Fig. 4(a). The state estimation error (solid
. ) . ) line) of the FDAE and its corresponding dead-zone threshold
§+2wl(ey” = 1)y +wy = u+ Bt~ To)¢(y) (dash-dotted line) are shown in Fig. 4(b). As we can see, the fault

wherew, ¢, care positive constantg represents the time profile iS detected at approximately;, = 11.5 s. Moreover, in Fig. 4(c)
of a fault and¢ is the change in the system due to the faul@nd (d), the residualgt) (solid lines) and their corresponding

Specifically, we consider two types of faulig! = ¢'sin(y) thresholdsu(t) (dash-dotted lines), associated with each iso-
and¢? = 62 cos(y), whereg! € ©! = [-1.5,1.5] and#? ¢ lation estimator, are shown. It can be seen that the residual of

©? = [-1.5,1.5]. We assume that the unknown incipient-faulstimator 1 always remains below its threshold, whereas the
evolution rateo defined in (3) satisfiess > @ = 0.1. The residual of estimator 2 exceeds its threshold at approximately
modeling uncertainty is unstructured and assumed to be sofia1 = 12.8 s, thus allowing the isolation of fault 1. .
inaccuracy in the value af. Therefore, the state equations for Concerning the fault isolation time, the time-behavior of

the nominal system are B8] — (52(t) + e~ =TD|2(8)])|g* (2, u)| — 277 (see
inequality (31)) is shown in Fig. 4(e). Moreover, Fig. 4(f)
&= [2%(1 —c(z )gj)Qa: — W’z +u} shows the time p2er_iod)2 ) (describelgl by (32)) corre-
1 2 1 sponding to eachj in the case wheré'* = 0.1. From
wherez 2 [z1,22]7 = [y,5]7 denotes the state vector. MoreFig. 4(f), we can see thad” (¢7) is approximately 0.5 s when
over, the class of faults is described as T, + 1 = 17 s. In other words, according to Theorem 5.1,
0 0 if there exists an interval of time (longer than 0.5 s and with
F = { [(/Jl} , L/)Q} } T, + t3 = 17 s as the starting point) over which the condition
IRI2(8)] — (k2(2) + e~ TD162(1)])| g2, )| — 277 > 62
— {{ L _0 } 7 { ) 0 }} is satisfied, then the maximum fault isolation time is
6" sin(a1) | 7| 67 cos(1) Lo =24 D2#2) = (17— 11.5) s+ 0.5s = 6.0s, i.e., the

By using the methodology described in Section I1I-B, a bank absolute fault isolation timé ; = 11.5s+ 6.0 s = 17.5 s.

two isolation estimators is designed In Fig. 4(e) we can see that this condition is satisfied for all
g [ Lo 1 t € [17 s,18.2 . Therefore, I} | = 17.5 s is a valid upper
r o= | 2w¢ (1 _ c(xl)Q) To — W2z, + ul bound on the absolute fau_lt |solat|or_1 twn_e. _
_ 0 Ao An analogous examp!e_ls shown in Fig. 5, corresponding to
+ oL sin(a:l)} - A LA:} . } , the occurrence of an incipient fault of type 2, with= Q.9 and
L 2 2 ) the fault evolution rater = 0.2, occurs at = 10 s. In this case,
P L2 too, the fault isolation turns out to be successful. In Fig. 5(e)
| 20G(1 = ¢ (21)?) 2 — w?a1 +u | and (f), with§2* = 0.2, an upper bound on the absolute fault
n [0 } Y [a&% - x1:| isolation time can be similarly computed &2 ; = 25.3 s+
| 6% cos(z1) 23 — 1o 0.48 s = 25.78 s.
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(a) Fault detection and approximation (FDAE) (b) State estimation error (FDAE)
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Fig. 4. (a) Time-behaviors of the fault function (solid line) and the neural-network output (dash-dotted line) associated with the FDAE ebjiiater. (
behaviors of the state estimation error (solid line) associated with the FDAE and the dead-zone threshold (dash-dotted line) (the faultrdetatianttis
shown by an arrow). (c) and (d) Time-behaviors of the state estimation errors (solid lines) and the thresholds (dash-dotted lines) associted isithation
estimators (the fault isolation time instant is shown by a vertical arrow). (e) Time- behav|dzﬁ§()tf)| —(K2(t) + et Tﬂ>|02(t)|)|g (z, u)| — 277 associated
with estimator 2; (f) The time periofd?(¢2) for eacht? (derived from (32) with9'2 = 0.10).

(a) Fault detection and approximation (FDAE) (b) State estimation error (FDAE)
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Fig. 5. (a) Time-behaviors of the fault function (solid line) and the neural-network output (dash-dotted line) associated with the FDAE e&jmator. (
Time-behaviors of the state estimation error (solid line) associated with the FDAE and the dead-zone threshold (dash-dotted line) (thddauintetastant

is shown by an arrow).(c) and (d) Time-behaviors of the state estimation errors (solid lines) and the thresholds (dash-dotted lines) asstheaied isdtation
estimators (the fault isolation time instant is shown by an arrow). (e) Time-behavird'6f)| — (k' (t) + e=5:=T&)|9'(¢)|)|¢* (z, u)| — 277 associated with
estimator 1; (f) The time perio®* (¢1) for eacht] (derived from (32) with5'? = 0.20).
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Pump 2

Fig. 6. The three-tank system.

B. The Three-Tank System Example 1) Leakage in tank7;. We assume that the leak is circular
in shape and of unknown radiug. Then, denoting by; ¢
the outflow rate of the unknown-size leak in tafik we
haveg:y = eym(r1)?y/2gey.

2) Actuator fault in pump 1. We consider a simple multi-
plicative actuator fault in pump 1 by lettinggy = u; +
(a1 — 1)@y, wheret; is the supply flow rate in the non-
fault case, and; is the parameter characterizing the mag-
nitude of the fault. For; = 1, we have the nonfault sit-
uation in pump 1, whereag = 0 implies that the pump
is completely faulty, in the sense that there is no flow.

13) Leakage intankT. Analogously to the case of a leakage
in tank 73, we haveys s = com(r2)?v/2gxs.

4) Actuator fault in pump 2 . Analogously to the case of a
fault in pump 1, we haves = s + (as — 1)uo.

The fault classF can now be written as

Let us consider theontrolledthree-tank system depicted in
Fig. 6 (the reader is referred to [21] and to the invited session
[24] for several interesting issues regarding this well-known
benchmark for FDI). The three tanks, 15, andi3 are identical
and are cylindrical in shape with a cross sectios: 0.0154 m?.

The cross section of the connection pipes$,is= 5 - 1075 m?,

and the liquid levels in the three tanks are denoted:fyz-,
andxs, respectively(0 < z; < 0.69m, ¢« = 1,2,3). The sup-
plying flow rates coming from pumps 1 and 2 are denoted by
andus, respectively @ < u; < 107*m?/s, j = 1,2). ¢13 and

q32 represent the flow rates between tanks 1 and 3 and betwee
tanks 3 and 2, respectively, angl, is the outflow rate.

By using balance equations and Torricelli's rule, we obtain
the state equations shown at the bottom of the page, whére
[z1 x2 w3]" denotes the state vectar,2 [u; uz]" de-

notes the control vector, arfi denotes théth component of the 6019} (z, ) 0293 (x, )
vector functionf(-). Moreover,c; = 1, = 0.8,andez =1 F = 0 , 0 ,
denote nondimensional outflow coefficients, arid the gravity 0 0
acceleration. 0
We .conS|der the case of abrupt faults (the case of incipient 03g3(z,u) | , | Oigh(z, )
faults is completely analogous and is not addressed here for the 0 0

sake of brevity). The clas# of nonlinear faults is defined by
the following two types of faults possibly acting on each of thehere 6! 2 (r1)2, g} (z,u) = c1ny/2gz1, 07 = ay —
two tanksZ; and75. gHx,u) 2 g, 03 = ()2, Bx,u) £ comy/29, 03

[y

1>

jf’l :fl(xvu)

(—clSpSign(xl —z3)v/29]z1 — z3| + ul)
A

i‘2 :fQ(xv U’)
(—63Spsign(a:2 — x3)V/29]z2 — 3| — 25,2922 + U/Q)
o A

j73 :f?)(xvu)

(clspsign(xl — 23)\/2g|r1 — 23| — c3Spsign(zs — x2)\/2¢|x3 — a72|)

N A
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(a) Estim. error FIE #1 (b) Estim. error FIE #2
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Fig. 7. (a)—(d) Time-behaviors of the estimation errors in the first state associated with the four isolation estimators. (e) Time-behavitinaitibe esors
associated with the FDAE. (f) Same as for (e) but plotted in enlarged form; the dashed lines represent the dead-zone thresholds.

az — 1, andgs(z, u) £ 4,. Therefore, the state equations fodue to uncertainty). As can be noticed from Fig. 7(a)—(d), only
the three-tank system can be put into the general form (1). the state estimation error of the first estimator always remains

With regards to modeling uncertainties, a 4% inaccuracy below its threshold, whereas the estimation errors of the other
the cross sectioiy,, of the connection pipe has been considhree estimators exceed their corresponding thresholds immedi-
ered. Moreover, after simulating the whole system under setely after7), thus allowing the isolation of fault no. 1. In this
eral operating conditions, we have obtaingd = 3 - 10~*, specific case, the absolute fault isolation tiffie,, is approxi-

72 = 5-107%, andfs = 6-10—* (for simplicity, uniform bounds mately equal to the absolute detection tiffie

on the modeling error are used). In order to guarantee fault isola-
bility (see (24), Theorem 4.1), after a suitable offline simula-
tion procedure, the following parameter sets have been defined:
O =[1.49-107°,4.9-107%],03 = [1.88-107°,4.9 - 1074], Presently, there is great industrial interest in automated
©? =[0.05,1], and®3 = [0.1, 1]. A bank of four isolation esti- fault-diagnosis methodologies. This is fueled by two main
mators has been implemented according to the scheme depidéetors. First, the cost of a failure in a dynamic system can
in Fig. 2. We have seA! = AZ = A% = A* = diag(5,5,5), be tremendous. Secondly, modern engineering systems are
v =~3 =107%, andy? = v* = 3 - 102. For the detection/ap- becoming more automated and complex, thus making it almost
proximation estimator, the online approximator has been impleapossible to manually monitor the health condition of a
mented as a feedforward neural approximator with one-hiddsystem, except for very simple faults. Fault isolation is one
layer of five neurons and a linear output layer. The dead-zoo&the key tasks of fault diagnosis as it provides the user with
has been computed on the basis of the uncertainty bounds idésrmation about the type of fault; this can be a significant
scribed above. step toward correcting the fault (either online or offline).

As an illustrative example (an exhaustive simulation study is In this paper, we have designed and analyzed a robust fault
clearly beyond the scope of the paper), Fig. 7 shows the sintetection and isolation scheme for nonlinear uncertain dynamic
lation results obtained when fault 1, wiéh = 10~%, occurred systems. The analysis has addressed both abrupt and incipient
at timeZy = 400 s. The estimation errors in the first state comdeveloping faults. The proposed architecture consists of a bank
ponentz; associated with each of the four FIEs are shown iof nonlinear adaptive estimators, one of which is used for the
Fig. 7(a)—(d), respectively. Moreover, in Fig. 7(e) the state edetection and the approximation of a fault, whereas the rest
timation error of the FDAE is presented. Finally, Fig. 7(e) isone for each fault type) are used for online fault isolation. The
replotted in enlarged form in Fig. 7(f); the dead-zone thresholésult-isolation decision scheme is based on adaptive threshold
are also plotted (dashed lines). Fig. 7(f) allows one to apprecidtiections that are derived to guarantee no false isolation deci-
the absolute fault detection tinig, (time instant when one of sion. We have also investigated the fault isolability conditions
the state estimation errors crosses its corresponding threstmidthe developed FDI scheme, and derived the class of faults

VII. CONCLUSION
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that can be isolated, and that is defined in terms of the so-callgds] V. Krishnaswami and G. Rizzoni, “Nonlinear parity equation residual
fault mismatch functions. The nonconservativeness of the fault

isolability conditions is characterized by a subclass of nonline
uncertain systems and a subclass of nonlinear faults for whic

these conditions are sufficient and necessary for fault isolability,

Moreover, an analytical upper bound on the fault isolation time,P?]
has been obtained. Finally, two simulation examples have been
given to illustrate the effectiveness of the proposed FDI schem&8l
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